Question
Question: How do you find a unit vector normal to the surface \[{x^3} + {y^3} + 3xyz = 3\] at the point\[\left...
How do you find a unit vector normal to the surface x3+y3+3xyz=3 at the point(1,2,−1)?
Solution
This question involves the operation of addition/ subtraction/ multiplication/division. We need to know the formula for finding the unit normal vector perpendicular to the surface. Also, we need to know how to find gradient values. We need to know how to substitute the point with the given equation in the question.
Complete step by step solution:
The given equation is shown below,
x3+y3+3xyz=3at point(1,2,−1).
The above equation can also be written as,
f(x,y,z)=x3+y3+3xyz−3→(1)
The formula for finding unit vector normal to the surface is given below,
Unit normal vector perpendicular to the surface=∣∇F∣∇F→(2)
Here Fcan also be written asf(x,y,z). Let’s find the∇Fvalue.
The formula for finding the value ∇Fis given below,
\left( 3 \right) \to \nabla F = \overrightarrow i \dfrac{\partial }{{\partial x}}\left( {{x^3} + {y^3} +
3xyz - 3} \right) + \overrightarrow j \dfrac{\partial }{{\partial y}}\left( {{x^3} + {y^3} + 3xyz - 3}
\right) + \overrightarrow k \dfrac{\partial }{{\partial z}}\left( {{x^3} + {y^3} + 3xyz - 3} \right)
\\
\\
\nabla F = \overrightarrow i \left( {3{{\left( 1 \right)}^2} + 3 \times 2 \times - 1} \right) +
\overrightarrow j \left( {3{{\left( 2 \right)}^2} + 3 \times 1 \times - 1} \right) + \overrightarrow k
\left( {3 \times 1 \times 2} \right) \\
\nabla F = \overrightarrow i \left( {3 - 6} \right) + \overrightarrow j \left( {12 - 3} \right) +
\overrightarrow k \left( 6 \right) \\
\nabla F = - 3\overrightarrow i + 9\overrightarrow j + 6\overrightarrow k \\
\dfrac{{\nabla F}}{{\left| {\nabla F} \right|}} = \dfrac{{ - 3\overrightarrow i + 9\overrightarrow j
+ 6\overrightarrow k }}{{\sqrt {{{\left( { - 3} \right)}^2} + {9^2} + {6^2}} }} \\
\dfrac{{\nabla F}}{{\left| {\nabla F} \right|}} = \dfrac{{ - 3\overrightarrow i + 9\overrightarrow j
+ 6\overrightarrow k }}{{\sqrt {9 + 81 + 36} }} \\
\dfrac{{\nabla F}}{{\left| {\nabla F} \right|}} = \dfrac{{ - 3\overrightarrow i + 9\overrightarrow j
+ 6\overrightarrow k }}{{\sqrt {126} }} \\
\dfrac{{\nabla F}}{{\left| {\nabla F} \right|}} = \dfrac{{ - 3\overrightarrow i + 9\overrightarrow j
+ 6\overrightarrow k }}{{3\sqrt {14} }} \\
\dfrac{{\nabla F}}{{\left| {\nabla F} \right|}} = \dfrac{{ - \overrightarrow i + 3\overrightarrow j +
2\overrightarrow k }}{{\sqrt {14} }} \\