Solveeit Logo

Question

Question: How do you find a power series converging to \[f(x) = \dfrac{{\sin x}}{x}\] and determine the radius...

How do you find a power series converging to f(x)=sinxxf(x) = \dfrac{{\sin x}}{x} and determine the radius of convergence?

Explanation

Solution

Hint : First we need to find the power series of sinxx\dfrac{{\sin x}}{x} . A power series about ‘a’, or just power series, is any series that can be written in the form n=0cn(xa)n\sum\limits_{n = 0}^\infty {{c_n}{{(x - a)}^n}} . Where ‘a’ and cn{c_n} are numbers. The cn{c_n} are often called the coefficients of the series. We can find the radius of convergence using the ratio test.

Complete step-by-step answer :
Given, f(x)=sinxxf(x) = \dfrac{{\sin x}}{x} .
Now let’s use the maclaurin expansion.
We know the formula of the maclaurin series: first we find the maclaurin series of f(x)=sinxf(x) = \sin x .
n=0f(n)(0)n!(x0)k=f(0)+f(0)1!x+f(0)2!x2+f(0)3!x3+f(4)(0)4!x4+f(5)(0)5!x5+.....\sum\limits_{n = 0}^\infty {\dfrac{{{f^{(n)}}(0)}}{{n!}}{{(x - 0)}^k} = f(0) + \dfrac{{f'(0)}}{{1!}}x + } \dfrac{{f''(0)}}{{2!}}{x^2} + \dfrac{{f'''(0)}}{{3!}}{x^3} + \dfrac{{{f^{(4)}}(0)}}{{4!}}{x^4} + \dfrac{{{f^{(5)}}(0)}}{{5!}}{x^5} + .....
We need f(0)=sin(0)=0f(0) = \sin (0) = 0
Differentiating sinx\sin x with respect to ‘x’. f(x)=cosxf'(x) = \cos x
f(0)=cos(0)=1f'(0) = \cos (0) = 1
Again differentiate with respect to ‘x’. f(x)=sinxf''(x) = - \sin x
f(0)=sin(0)=0f''(0) = - \sin (0) = 0
Again differentiate with respect to ‘x’. f(x)=cosxf'''(x) = - \cos x
f(0)=cos(0)=1f'''(0) = - \cos (0) = - 1
Again differentiate with respect to ‘x’. f(4)(0)=sinx{f^{(4)}}(0) = \sin x
f(4)(0)=sin(0)=0{f^{(4)}}(0) = \sin (0) = 0
Again differentiate with respect to ‘x’. f(5)(0)=cosx{f^{(5)}}(0) = \cos x
f(5)(0)=cos(0)=1{f^{(5)}}(0) = \cos (0) = 1
Substituting we have,
sinx=0+(1)1!x+(0)2!x2+(1)3!x3+(0)4!x4+(1)5!x5+......\Rightarrow \sin x = 0 + \dfrac{{(1)}}{{1!}}x + \dfrac{{(0)}}{{2!}}{x^2} + \dfrac{{( - 1)}}{{3!}}{x^3} + \dfrac{{(0)}}{{4!}}{x^4} + \dfrac{{(1)}}{{5!}}{x^5} + ......
sinx=0+x+0x33!+0+x55!......\Rightarrow \sin x = 0 + x + 0 - \dfrac{{{x^3}}}{{3!}} + 0 + \dfrac{{{x^5}}}{{5!}} - ......
sinx=xx33!+x55!.....\Rightarrow \sin x = x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - .....
Expressing this in the sigma notation we have,
sinx=n=0(1)nx2n+1(2n+1)!\Rightarrow \sin x = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}\dfrac{{{x^{2n + 1}}}}{{(2n + 1)!}}}
But we need sinxx\dfrac{{\sin x}}{x} . So divide the above equation by x
sinxx=n=0(1)nx2n+1(2n+1)!.1x\Rightarrow \dfrac{{\sin x}}{x} = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}\dfrac{{{x^{2n + 1}}}}{{(2n + 1)!}}} .\dfrac{1}{x}
sinxx=n=0(1)nx2n(2n+1)!\Rightarrow \dfrac{{\sin x}}{x} = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}\dfrac{{{x^{2n}}}}{{(2n + 1)!}}} . This is the required power series.
Now for checking the radius of convergence, we have ratio test sate that if we have a series an\sum {{a_n}} then limnan+1an=L\mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{a_{n + 1}}}}{{{a_n}}}} \right| = L . If L is less than 1 then the series is convergent.
Here an=(1)nx2n(2n+1)!{a_n} = {( - 1)^n}\dfrac{{{x^{2n}}}}{{(2n + 1)!}}
Lets find an+1an=((1)n+1x2(n+1)(2(n+1)+1)!)((1)nx2n(2n+1)!)\dfrac{{{a_{n + 1}}}}{{{a_n}}} = \dfrac{{\left( {{{( - 1)}^{n + 1}}\dfrac{{{x^{2(n + 1)}}}}{{(2(n + 1) + 1)!}}} \right)}}{{\left( {{{( - 1)}^n}\dfrac{{{x^{2n}}}}{{(2n + 1)!}}} \right)}}
We have (1)n+1(1)n=(1)n+1n\dfrac{{{{( - 1)}^{n + 1}}}}{{{{( - 1)}^n}}} = {( - 1)^{n + 1 - n}} above becomes
an+1an=((1)n+1nx2(n+1)(2n+2+1)!)(x2n(2n+1)!)\Rightarrow \dfrac{{{a_{n + 1}}}}{{{a_n}}} = \dfrac{{\left( {{{( - 1)}^{n + 1 - n}}\dfrac{{{x^{2(n + 1)}}}}{{(2n + 2 + 1)!}}} \right)}}{{\left( {\dfrac{{{x^{2n}}}}{{(2n + 1)!}}} \right)}}
We can rewrite it has,
an+1an=x2n+2(2n+3)!×(2n+1)!x2n\Rightarrow \dfrac{{{a_{n + 1}}}}{{{a_n}}} = - \dfrac{{{x^{2n + 2}}}}{{(2n + 3)!}} \times \dfrac{{(2n + 1)!}}{{{x^{2n}}}}
Since we have, x2n+2x2n=x2n+22n=x2\dfrac{{{x^{2n + 2}}}}{{{x^{2n}}}} = {x^{2n + 2 - 2n}} = {x^2}
an+1an=x2(2n+1)!(2n+3)!\Rightarrow \dfrac{{{a_{n + 1}}}}{{{a_n}}} = - \dfrac{{{x^2}(2n + 1)!}}{{(2n + 3)!}}
Now substituting in the limit we have
limnan+1an=limnx2(2n+1)!(2n+3)!\Rightarrow \mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{a_{n + 1}}}}{{{a_n}}}} \right| = \mathop {\lim }\limits_{n \to \infty } \left| { - \dfrac{{{x^2}(2n + 1)!}}{{(2n + 3)!}}} \right|
Since the limit is for ‘n’ we can treat x as constant and removing outside the limit,
=x2limn(2n+1)!(2n+3)!= {x^2}\mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{(2n + 1)!}}{{(2n + 3)!}}} \right|
=x2limn(2n+1)!(2n+3)!= {x^2}\mathop {\lim }\limits_{n \to \infty } \dfrac{{(2n + 1)!}}{{(2n + 3)!}}
This can be written as
=x2limn1(2n+3)(2n+2)= {x^2}\mathop {\lim }\limits_{n \to \infty } \dfrac{1}{{(2n + 3)(2n + 2)}}
=0= 0
The radius of convergence is 0.
So, the correct answer is “0”.

Note : Since it has a long calculation part be careful in each step. In the above problem we have, (2n+1)!(2n+3)!\dfrac{{(2n + 1)!}}{{(2n + 3)!}} .
We know that n!=n(n1)(n2).....n! = n(n - 1)(n - 2)..... . Hence we can write (2n+3)!=(2n+3)(2n+2)(2n+1)!(2n + 3)! = (2n + 3)(2n + 2)(2n + 1)! . Hence the numerator terms cancel out we will have 1(2n+3)(2n+2)\dfrac{1}{{(2n + 3)(2n + 2)}} .