Solveeit Logo

Question

Question: How do you find a double angle formula for \(\sec \left( 2x \right)\) in terms of only \(\csc x\) an...

How do you find a double angle formula for sec(2x)\sec \left( 2x \right) in terms of only cscx\csc x and secx\sec x?

Explanation

Solution

We find the formulas for cos(2x)\cos \left( 2x \right) where cos(2x)=2cos2x1=12sin2x\cos \left( 2x \right)=2{{\cos }^{2}}x-1=1-2{{\sin }^{2}}x. We also use the inverse relations where cscx=1sinx\csc x=\dfrac{1}{\sin x} and secx=1cosx\sec x=\dfrac{1}{\cos x}. We put the values and find the relations between them.

Complete step by step answer:
We use the multiple angle formula for cos(2x)\cos \left( 2x \right) where cos(2x)=2cos2x1=12sin2x\cos \left( 2x \right)=2{{\cos }^{2}}x-1=1-2{{\sin }^{2}}x.
We also know the inverse relations where cscx=1sinx\csc x=\dfrac{1}{\sin x} and secx=1cosx\sec x=\dfrac{1}{\cos x}. The vice versa relations are also true.
So, sec2x=1cos2x\sec 2x=\dfrac{1}{\cos 2x} and we put the value cos(2x)=2cos2x1\cos \left( 2x \right)=2{{\cos }^{2}}x-1 to get
sec2x=1cos2x=12cos2x1\sec 2x=\dfrac{1}{\cos 2x}=\dfrac{1}{2{{\cos }^{2}}x-1}.
We now need to find the relation in terms of secx\sec x and we put secx=1cosx\sec x=\dfrac{1}{\cos x}.
sec2x=12cos2x1=12(1secx)21\sec 2x=\dfrac{1}{2{{\cos }^{2}}x-1}=\dfrac{1}{2{{\left( \dfrac{1}{\sec x} \right)}^{2}}-1}.
We multiply both numerator and denominator with sec2x{{\sec }^{2}}x to get
sec2x=12sec2x1=sec2x2sec2x\sec 2x=\dfrac{1}{\dfrac{2}{{{\sec }^{2}}x}-1}=\dfrac{{{\sec }^{2}}x}{2-{{\sec }^{2}}x}.
We put the value cos(2x)=12sin2x\cos \left( 2x \right)=1-2{{\sin }^{2}}x to get
sec2x=1cos2x=112sin2x\sec 2x=\dfrac{1}{\cos 2x}=\dfrac{1}{1-2{{\sin }^{2}}x}.
We now need to find the relation in terms of cscx\csc x and we put cscx=1sinx\csc x=\dfrac{1}{\sin x}.
sec2x=112sin2x=112(1cscx)2\sec 2x=\dfrac{1}{1-2{{\sin }^{2}}x}=\dfrac{1}{1-2{{\left( \dfrac{1}{\csc x} \right)}^{2}}}.
We multiply both numerator and denominator with csc2x{{\csc }^{2}}x to get
sec2x=112csc2x=csc2xcsc2x2\sec 2x=\dfrac{1}{1-\dfrac{2}{{{\csc }^{2}}x}}=\dfrac{{{\csc }^{2}}x}{{{\csc }^{2}}x-2}.
The double angle formulas for sec(2x)\sec \left( 2x \right) in terms of only cscx\csc x and secx\sec x are sec2x=csc2xcsc2x2\sec 2x=\dfrac{{{\csc }^{2}}x}{{{\csc }^{2}}x-2} and sec2x=sec2x2sec2x\sec 2x=\dfrac{{{\sec }^{2}}x}{2-{{\sec }^{2}}x} respectively.

Note: The double-angle formulas can be quite useful when we need to simplify complicated trigonometric expressions later. With these formulas, it is better to remember where they come from, rather than trying to remember the actual formulas.