Solveeit Logo

Question

Question: How do you find \[2A-3B\] given \[A=\left( 5\ \ -2\ \ 3\ \ 1 \right)\] and \[B=\left( -2\ \ 3\ \ 1\ ...

How do you find 2A3B2A-3B given A=(5  2  3  1)A=\left( 5\ \ -2\ \ 3\ \ 1 \right) and B=(2  3  1  0)B=\left( -2\ \ 3\ \ 1\ \ 0 \right) ?

Explanation

Solution

From the question given we have to find 2A3B2A-3B for the given matrices A=(5  2  3  1)A=\left( 5\ \ -2\ \ 3\ \ 1 \right) and B=(2  3  1  0)B=\left( -2\ \ 3\ \ 1\ \ 0 \right) . The given two matrices have the same columns and rows so without any doubt we can add and subtract them easily. 2A2A Means multiplying each element present in the matrix A with the number 22 and 3B3B means multiplying each and every element with the number 33 . After doing the multiplication we can subtract them directly then we will get a matrix that is the required answer.

Complete step by step solution:
From the question we have two matrices they are,
A=(5  2  3  1)\Rightarrow A=\left( 5\ \ -2\ \ 3\ \ 1 \right)
B=(2  3  1  0)\Rightarrow B=\left( -2\ \ 3\ \ 1\ \ 0 \right)
By observing the two matrices the columns and rows of the two matrices are equal i.e., the columns of A and B are 44, and the rows of A and B are  1\ 1 . a column in a matrix means vertical lines and row of the matrix means horizontal lines.
By this we can conclude that we can perform addition and subtraction properties on the given matrices.
Now, we have to find 2A3B2A-3B.
2A2A means we have to multiply matrix A with 22.
By multiplying matrix, A with 22 we get,
A=(5  2  3  1)\Rightarrow A=\left( 5\ \ -2\ \ 3\ \ 1 \right)
2A=(2×5  2×2  2×3  2×1)\Rightarrow 2A=\left( 2\times 5\ \ 2\times -2\ \ 2\times 3\ \ 2\times 1 \right)
2A=(10  4  6  2)\Rightarrow 2A=\left( 10\ \ -4\ \ 6\ \ 2 \right)
3B3B means multiplying each and every element with the number 33.
By multiplying matrix, B with 33 we get,
B=(2  3  1  0)\Rightarrow B=\left( -2\ \ 3\ \ 1\ \ 0 \right)
3B=(3×2  3×3  3×1  3×0)\Rightarrow 3B=\left( 3\times -2\ \ 3\times 3\ \ 3\times 1\ \ 3\times 0 \right)
3B=(6  9  3  0)\Rightarrow 3B=\left( -6\ \ 9\ \ 3\ \ 0 \right)
Now we have to find 2A3B2A-3B by doing this we will get,
2A3B\Rightarrow 2A-3B
2A3B=(10  4  6  2)(6  9  3  0)\Rightarrow 2A-3B=\left( 10\ \ -4\ \ 6\ \ 2 \right)-\left( -6\ \ 9\ \ 3\ \ 0 \right)
2A3B=(10(6)  49  63  20)\Rightarrow 2A-3B=\left( 10-\left( -6 \right)\ \ -4-9\ \ 6-3\ \ 2-0 \right)
2A3B=(16  13  3  2)\Rightarrow 2A-3B=\left( 16\ \ -13\ \ 3\ \ 2 \right)
Therefore, the required answer is 2A3B=(16  13  3  2)2A-3B=\left( 16\ \ -13\ \ 3\ \ 2 \right).

Note: Students should recall properties of matrices while doing the above problem. Students should also know that while doing multiplication of two matrices the columns of the first matrix should be equal to rows of the second matrix if this condition satisfies students should proceed with the multiplication of two matrices.