Solveeit Logo

Question

Question: How do you factor \({x^6} + 125\)?...

How do you factor x6+125{x^6} + 125?

Explanation

Solution

To order to determine the factors of the above equation ,first rewrite the equation by writing x6{x^6} as (x3)2{\left( {{x^3}} \right)^2} using property of exponent am×n=(am)n{a^{m \times n}} = {\left( {{a^m}} \right)^n} and 125125 as 5×5×5=535 \times 5 \times 5 = {5^3} and then use the formula of sum of two cubes (A3+B3)=(A+B)(A2A.B+B2)\left( {{A^3} + {B^3}} \right) = \left( {A + B} \right)\left( {{A^2} - A.B + {B^2}} \right) by considering AA as x2{x^2} and BB as 53{5^3}.To factorise a quartic part Solve it as (a2kab+b2)(a2+kab+b2)=a4+(2k2)a2b2+b4\left( {{a^2} - kab + {b^2}} \right)\left( {{a^2} + kab + {b^2}} \right) = {a^4} + \left( {2 - {k^2}} \right){a^2}{b^2} + {b^4}by comparing .You’ll get your required factors.

Complete step by step solution:
(A3B3)=(AB)(A2+A.B+B2)\left( {{A^3} - {B^3}} \right) = \left( {A - B} \right)\left( {{A^2} + A.B + {B^2}} \right)
We are given a mathematical function having variable (xx),let it be f(x)f(x)
f(x)=x6+125f(x) = {x^6} + 125
To split this expression into its factors ,we will be writing 125125as5×5×5=535 \times 5 \times 5 = {5^3} and using the property of exponents that am×n=(am)n{a^{m \times n}} = {\left( {{a^m}} \right)^n}So writing
x6{x^6} as (x3)2{\left( {{x^3}} \right)^2}.f(x)f(x) will now become,
f(x)=(x2)3+53f(x) = {\left( {{x^2}} \right)^3} + {5^3}
Now we’ll be using the formula of sum of two cube number
(A3+B3)=(A+B)(A2A.B+B2)\left( {{A^3} + {B^3}} \right) = \left( {A + B} \right)\left( {{A^2} - A.B + {B^2}} \right)by considering AA as x2{x^2} and BB as 53{5^3}
f(x)=(x2+5)((x2)25(x2)+52) =(x2+5)(x45x2+25)  f(x) = \left( {{x^2} + 5} \right)\left( {{{({x^2})}^2} - 5({x^2}) + {5^2}} \right) \\\ = \left( {{x^2} + 5} \right)\left( {{x^4} - 5{x^2} + 25} \right) \\\ ----(1)
To factorise the Quartic part of the expression we’ll use a different aspect as
(a2kab+b2)(a2+kab+b2)=a4+(2k2)a2b2+b4\left( {{a^2} - kab + {b^2}} \right)\left( {{a^2} + kab + {b^2}} \right) = {a^4} + \left( {2 - {k^2}} \right){a^2}{b^2} + {b^4}
So, now comparing the result mentioned above a4+(2k2)a2b2+b4{a^4} + \left( {2 - {k^2}} \right){a^2}{b^2} + {b^4} with our original expression
a=x b=5  a = x \\\ b = \sqrt 5 \\\
We find that:
(x2k5x+5)(x2+k5x+5)=x4+(2k2)5x2+25\left( {{x^2} - k\sqrt 5 x + 5} \right)\left( {{x^2} + k\sqrt 5 x + 5} \right) = {x^4} + \left( {2 - {k^2}} \right)5{x^2} + 25-----(2)
Equating coefficients of x2{x^2} of the above with the same in equation (1),we get,
(2k2)5=5 (2k2)=1 k2=3 k=±3  \left( {2 - {k^2}} \right)5 = - 5 \\\ \left( {2 - {k^2}} \right) = - 1 \\\ {k^2} = 3 \\\ k = \pm \sqrt 3 \\\
So, putting k=±3k = \pm \sqrt 3 in the equation (2)

x45x2+25=(x23.5x+5)(x2+3.5x+5) =(x215x+5)(x2+15x+5) {x^4} - 5{x^2} + 25 = \left( {{x^2} - \sqrt 3 .\sqrt 5 x + 5} \right)\left( {{x^2} + \sqrt 3 .\sqrt 5 x + 5} \right) \\\ = \left( {{x^2} - \sqrt {15} x + 5} \right)\left( {{x^2} + \sqrt {15} x + 5} \right) \\\

Putting back the value of x45x2+25{x^4} - 5{x^2} + 25in equation (1),we finally get,
f(x)=(x2+5)(x215x+5)(x2+15x+5)f(x) = \left( {{x^2} + 5} \right)\left( {{x^2} - \sqrt {15} x + 5} \right)\left( {{x^2} + \sqrt {15} x + 5} \right)
Therefore, we have successfully factorized f(x)f(x) as(x2+5)(x215x+5)(x2+15x+5)\left( {{x^2} + 5} \right)\left( {{x^2} - \sqrt {15} x + 5} \right)\left( {{x^2} + \sqrt {15} x + 5} \right).

Additional Information:
Cubic Equation: A cubic equation is a equation which can be represented in the form of ax3+bx2cx+da{x^3} + b{x^2}cx + d where xx is the unknown variable and a,b,c,d are the numbers known where a0a \ne 0.If a=0a = 0 then the equation will become a quadratic equation and will no longer be cubic

Note:
1. One must be careful while calculating the answer as calculation error may come.
2.Don’t forget to compare the given cubic equation with the standard one every time.