Solveeit Logo

Question

Question: How do you factor \({\text{y = }}{{\text{x}}^4} - 2{{\text{x}}^3} - 8{\text{x + 16}}\) ?...

How do you factor y = x42x38x + 16{\text{y = }}{{\text{x}}^4} - 2{{\text{x}}^3} - 8{\text{x + 16}} ?

Explanation

Solution

In this question, we have been given a polynomial equation y = x42x38x + 16{\text{y = }}{{\text{x}}^4} - 2{{\text{x}}^3} - 8{\text{x + 16}} and we have been asked to factorise the given polynomial. First, we will find the common factors or terms in the given polynomial and try to separate it in pairs, so that it can be factored again easily. And then. we will try to simplify the terms and factorise it.

Formula used:
(a3b3)=(a - b) (a2+ab + b2)\left( {{{\text{a}}^3} - {{\text{b}}^3}} \right) = ({\text{a - b) (}}{{\text{a}}^2} + {\text{ab + }}{{\text{b}}^2})

Complete step-by-step answer:
The given polynomial equation is y = x42x38x + 16{\text{y = }}{{\text{x}}^4} - 2{{\text{x}}^3} - 8{\text{x + 16}}, we will try to find the common digits.
So here, we will try to separate the terms which seems likely to be factored.
y = (x42x3)(8x - 16){\text{y = }}\left( {{{\text{x}}^4} - 2{{\text{x}}^3}} \right) - \left( {8{\text{x - 16}}} \right)
So here we can see that, x3{{\text{x}}^3} is common in first term and 22 is common in second term, taking the commons out, we get
x3(x - 2) - 8 (x - 2){{\text{x}}^3}({\text{x - 2) - 8 (x - 2)}}
As we can see (x - 2){\text{(x - 2)}} is common here, we will take it out
(x - 2) ( x38)({\text{x - 2) ( }}{{\text{x}}^3} - 8)
So here we get this. Now 88 can be written as 23{2^3} because there is x3{{\text{x}}^3} ,
(x - 2) ( x323)({\text{x - 2) ( }}{{\text{x}}^3} - {2^3})
We can see x323){\text{( }}{{\text{x}}^3} - {2^3}) is now in the form of (a3b3)=(a - b) (a2+ab + b2)\left( {{{\text{a}}^3} - {{\text{b}}^3}} \right) = ({\text{a - b) (}}{{\text{a}}^2} + {\text{ab + }}{{\text{b}}^2}) , we will use it
(x - 2) ( x2)(x2+2x + 22)({\text{x - 2) ( x}} - 2)({{\text{x}}^2} + 2{\text{x + }}{{\text{2}}^2})
(x - 2) ( x2)(x2+2x + 4)({\text{x - 2) ( x}} - 2)({{\text{x}}^2} + 2{\text{x + 4}})
And here there are two ( x2){\text{( x}} - 2) and can be written as ( x2)2{{\text{( x}} - 2)^2} . So we get,
( x2)2(x2+2x + 4){{\text{( x}} - 2)^2}({{\text{x}}^2} + 2{\text{x + 4}})

Therefore (x - 2) ( x2)(x2+2x + 4)({\text{x - 2) ( x}} - 2)({{\text{x}}^2} + 2{\text{x + 4}}) are the factors of y = x42x38x + 16{\text{y = }}{{\text{x}}^4} - 2{{\text{x}}^3} - 8{\text{x + 16}}.

Note:
Alternative method:
The given equation,
y = x42x38x + 16{\text{y = }}{{\text{x}}^4} - 2{{\text{x}}^3} - 8{\text{x + 16}}
 x48x + 162x3{\text{ }}{{\text{x}}^4} - 8{\text{x + 16}} - 2{{\text{x}}^3}
So here we can see that, x{\text{x}} is common in first term and 22 is common in second term, taking the commons out, we get
 x(x38)2(x38){\text{ x}}\left( {{{\text{x}}^3} - 8} \right) - 2({{\text{x}}^3} - 8)
As we can see (x38)({{\text{x}}^3} - 8) is common here, we will take it out
( x2)(x38)\left( {{\text{ x}} - 2} \right)({{\text{x}}^3} - 8)
Now 88 can be written as 23{2^3} because there is x3{{\text{x}}^3} ,
(x - 2) ( x323)({\text{x - 2) ( }}{{\text{x}}^3} - {2^3})
We can see x323){\text{( }}{{\text{x}}^3} - {2^3}) is now in the form of (a3b3)=(a - b) (a2+ab + b2)\left( {{{\text{a}}^3} - {{\text{b}}^3}} \right) = ({\text{a - b) (}}{{\text{a}}^2} + {\text{ab + }}{{\text{b}}^2}) , we will use it
(x - 2) ( x2)(x2+2x + 22)({\text{x - 2) ( x}} - 2)({{\text{x}}^2} + 2{\text{x + }}{{\text{2}}^2})
(x - 2) ( x2)(x2+2x + 4)({\text{x - 2) ( x}} - 2)({{\text{x}}^2} + 2{\text{x + 4}})
And here there are two ( x2){\text{( x}} - 2) and can be written as ( x2)2{{\text{( x}} - 2)^2} . So we get,
( x2)2(x2+2x + 4){{\text{( x}} - 2)^2}({{\text{x}}^2} + 2{\text{x + 4}})
Therefore (x - 2) ( x2)(x2+2x + 4)({\text{x - 2) ( x}} - 2)({{\text{x}}^2} + 2{\text{x + 4}}) are the factors of y = x42x38x + 16{\text{y = }}{{\text{x}}^4} - 2{{\text{x}}^3} - 8{\text{x + 16}}.