Solveeit Logo

Question

Question: How do you express \(\sin \left( {{{\sin }^{ - 1}}\left( x \right) + {{\cos }^{ - 1}}\left( y \right...

How do you express sin(sin1(x)+cos1(y))\sin \left( {{{\sin }^{ - 1}}\left( x \right) + {{\cos }^{ - 1}}\left( y \right)} \right) without trigonometric function?

Explanation

Solution

Here, in the given question, we need to express sin(sin1(x)+cos1(y))\sin \left( {{{\sin }^{ - 1}}\left( x \right) + {{\cos }^{ - 1}}\left( y \right)} \right) without trigonometric function. As we can see sin(sin1(x)+cos1(y))\sin \left( {{{\sin }^{ - 1}}\left( x \right) + {{\cos }^{ - 1}}\left( y \right)} \right) is given in the form of an identity sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B, so we will try to expand the given expression using this identity. After that we will use Pythagoras theorem to express functions in the form which is without any trigonometric function to get our required answer.

Formulae used:
sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B
sin(sin1x)=x\Rightarrow \sin \left( {{{\sin }^{ - 1}}x} \right) = x
cos(cos1y)=y\Rightarrow \cos \left( {{{\cos }^{ - 1}}y} \right) = y

Complete step by step answer:
Given, sin(sin1(x)+cos1(y))\sin \left( {{{\sin }^{ - 1}}\left( x \right) + {{\cos }^{ - 1}}\left( y \right)} \right)
As we know, sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B
Let A=sin1xA = {\sin ^{ - 1}}x and B=cos1yB = {\cos ^{ - 1}}y.
sin(sin1x+cos1y)=sin(sin1x)cos(cos1y)+cos(sin1x)sin(cos1y)\Rightarrow \sin \left( {{{\sin }^{ - 1}}x + {{\cos }^{ - 1}}y} \right) = \sin \left( {{{\sin }^{ - 1}}x} \right)\cos \left( {{{\cos }^{ - 1}}y} \right) + \cos \left( {{{\sin }^{ - 1}}x} \right)\sin \left( {{{\cos }^{ - 1}}y} \right)
As we know, sin(sin1x)=x\sin \left( {{{\sin }^{ - 1}}x} \right) = x and cos(cos1y)=y\cos \left( {{{\cos }^{ - 1}}y} \right) = y. Therefore, we get
sin(sin1x+cos1y)=xy+cos(sin1x)sin(cos1y).....(i)\Rightarrow \sin \left( {{{\sin }^{ - 1}}x + {{\cos }^{ - 1}}y} \right) = xy + \cos \left( {{{\sin }^{ - 1}}x} \right)\sin \left( {{{\cos }^{ - 1}}y} \right).....\left( i \right)
Now, we will solve cos(sin1x)\cos \left( {{{\sin }^{ - 1}}x} \right) and sin(cos1y)\sin \left( {{{\cos }^{ - 1}}y} \right) individually.
We have to find the value of cos(sin1x)=cos(sin1x1)\cos \left( {{{\sin }^{ - 1}}x} \right) = \cos \left( {{{\sin }^{ - 1}}\dfrac{x}{1}} \right). As we know sinθ=PH\sin \theta = \dfrac{P}{H}, from here we will find the value of base.
The right triangle with perpendicular = xx and hypotenuse = 11. Therefore,

Base=H2P2Base = \sqrt {{H^2} - {P^2}}
Base = 1x2\sqrt {1 - {x^2}} .
Therefore, we get
sin1x=cos11x21\Rightarrow {\sin ^{ - 1}}x = {\cos ^{ - 1}}\dfrac{{\sqrt {1 - {x^2}} }}{1}.
Hence, cos(sin1x)=cos(cos11x21)\cos \left( {{{\sin }^{ - 1}}x} \right) = \cos \left( {{{\cos }^{ - 1}}\dfrac{{\sqrt {1 - {x^2}} }}{1}} \right)
cos(sin1x)=1x2\Rightarrow \cos \left( {{{\sin }^{ - 1}}x} \right) = \sqrt {1 - {x^2}}
Now, we will find the value of sin(cos1y)=sin(cos1y1)\sin \left( {{{\cos }^{ - 1}}y} \right) = \sin \left( {{{\cos }^{ - 1}}\dfrac{y}{1}} \right). As we know cosθ=BH\cos \theta = \dfrac{B}{H}, from here we will find the value of perpendicular.
The right triangle with base = yy and hypotenuse = 11. Therefore,

Perpendicular=H2B2Perpendicular = \sqrt {{H^2} - {B^2}}
Perpendicular = 1y2\sqrt {1 - {y^2}}
Therefore, we get
cos1y=sin11y21\Rightarrow {\cos ^{ - 1}}y = {\sin ^{ - 1}}\dfrac{{\sqrt {1 - {y^2}} }}{1}.
Hence, sin(cos1x)=sin(sin11y21)\sin \left( {{{\cos }^{ - 1}}x} \right) = \sin \left( {{{\sin }^{ - 1}}\dfrac{{\sqrt {1 - {y^2}} }}{1}} \right)
sin(cos1x)=1y2\Rightarrow \sin \left( {{{\cos }^{ - 1}}x} \right) = \sqrt {1 - {y^2}}
Now, we will substitute value of cos(sin1x)\cos \left( {{{\sin }^{ - 1}}x} \right) and sin(cos1y)\sin \left( {{{\cos }^{ - 1}}y} \right) in (i)\left( i \right).
sin(sin1x+cos1y)=xy+cos(sin1x)sin(cos1y).....(i)\sin \left( {{{\sin }^{ - 1}}x + {{\cos }^{ - 1}}y} \right) = xy + \cos \left( {{{\sin }^{ - 1}}x} \right)\sin \left( {{{\cos }^{ - 1}}y} \right).....\left( i \right)
sin(sin1x+cos1y)=xy+1x2×1y2\Rightarrow \sin \left( {{{\sin }^{ - 1}}x + {{\cos }^{ - 1}}y} \right) = xy + \sqrt {1 - {x^2}} \times \sqrt {1 - {y^2}}

Therefore, we can write sin(sin1(x)+cos1(y))\sin \left( {{{\sin }^{ - 1}}\left( x \right) + {{\cos }^{ - 1}}\left( y \right)} \right) without trigonometric functions as xy+1x2×1y2xy + \sqrt {1 - {x^2}} \times \sqrt {1 - {y^2}} .

Note: Remember that inverse trigonometric functions do the opposite of the regular trigonometric functions. For example: inverse sine\sin e i.e., sin1{\sin ^{ - 1}} does the opposite of sine. The expression sin1x{\sin ^{ - 1}}x is not the same as 1sinx\dfrac{1}{{\sin x}}. In other words, the 1 - 1 is not an exponent. Instead, it simply means inverse function.