Solveeit Logo

Question

Question: : How do you express \(\sin \left( \dfrac{\pi }{12} \right)\cdot \cos \left( \dfrac{3\pi }{8} \right...

: How do you express sin(π12)cos(3π8)\sin \left( \dfrac{\pi }{12} \right)\cdot \cos \left( \dfrac{3\pi }{8} \right) without products of trigonometric functions?

Explanation

Solution

Simplify sin(π12)\sin \left( \dfrac{\pi }{12} \right) and cos(3π8)\cos \left( \dfrac{3\pi }{8} \right) using the half angle identity for sine function and cosine function separately. Then multiply the values together and do necessary calculations to obtain the required solution.

Complete step by step solution:
According to the given question, we are given an expression which has the product of two trigonometric functions. We are asked to express it separately.
Here, the question says that we have to express it without products of trigonometric functions, that simply means that, we have to express the functions separately.
We will accomplish this task by making use of a trigonometric formula, which is,
sin(ab)+sin(a+b)=2sinacosb\sin (a-b)+\sin (a+b)=2\sin a\cos b
We can rearrange it as,
sinacosb=12(sin(ab)+sin(a+b))\sin a\cos b=\dfrac{1}{2}\left( \sin (a-b)+\sin (a+b) \right)------(1)
The given expression we have is,
sin(π12).cos(3π8)\sin \left( \dfrac{\pi }{12} \right).\cos \left( \dfrac{3\pi }{8} \right)-----(2)
Here, a=π12a=\dfrac{\pi }{12} and b=3π8b=\dfrac{3\pi }{8}
We will obtain the values and substitute it in the equation (1),
We now have,
sin(ab)=sin(π123π8)\sin (a-b)=\sin \left( \dfrac{\pi }{12}-\dfrac{3\pi }{8} \right)
Taking LCM, we have, LCM(12,8)=24LCM(12,8)=24
sin(2π9π24)=sin(7π24)\Rightarrow \sin \left( \dfrac{2\pi -9\pi }{24} \right)=\sin \left( \dfrac{-7\pi }{24} \right)
And as we know that sine function is an odd function, so we have,
sin(7π24)\Rightarrow -\sin \left( \dfrac{7\pi }{24} \right)-----(3)
Now, then,
sin(a+b)=sin(π12+3π8)\sin (a+b)=\sin \left( \dfrac{\pi }{12}+\dfrac{3\pi }{8} \right)
sin(2π+9π24)\Rightarrow \sin \left( \dfrac{2\pi +9\pi }{24} \right)
sin(11π24)\Rightarrow \sin \left( \dfrac{11\pi }{24} \right)----(4)
Now, we will substitute the equation (3) and equation (4) in equation (1), we get,
sin(π12)cos(3π8)=12(sin(7π24)+sin(11π24))\sin \left( \dfrac{\pi }{12} \right)\cos \left( \dfrac{3\pi }{8} \right)=\dfrac{1}{2}\left( -\sin \left( \dfrac{7\pi }{24} \right)+\sin \left( \dfrac{11\pi }{24} \right) \right)-----(5)
We can move a step ahead and determine the numerical value as well. We will have to figure out the values of the terms involved first.
We know that,
sinθ=cos(90θ)\sin \theta =\cos ({{90}^{\circ }}-\theta )
We can write the equation (5) as,
12(sin(7π24)+sin(11π24))\dfrac{1}{2}\left( -\sin \left( \dfrac{7\pi }{24} \right)+\sin \left( \dfrac{11\pi }{24} \right) \right)
12(cos(π27π24)+cos(π211π24))\Rightarrow \dfrac{1}{2}\left( -\cos \left( \dfrac{\pi }{2}-\dfrac{7\pi }{24} \right)+\cos \left( \dfrac{\pi }{2}-\dfrac{11\pi }{24} \right) \right)
12(cos(5π24)+cos(π24))\Rightarrow \dfrac{1}{2}\left( -\cos \left( \dfrac{5\pi }{24} \right)+\cos \left( \dfrac{\pi }{24} \right) \right)-----(6)
So, we have to find the value of cos(5π24)\cos \left( \dfrac{5\pi }{24} \right) and cos(π24)\cos \left( \dfrac{\pi }{24} \right). We will be using formula cos(A2)=1+cosA2\cos \left( \dfrac{A}{2} \right)=\sqrt{\dfrac{1+\cos A}{2}} for the same.
To find the value of cos(5π24)\cos \left( \dfrac{5\pi }{24} \right), we will first find the value of cos(5π12)\cos \left( \dfrac{5\pi }{12} \right).
cos(5π12)=cos(3π+2π12)=cos(3π12+2π12)=cos(π4+π6)\cos \left( \dfrac{5\pi }{12} \right)=\cos \left( \dfrac{3\pi +2\pi }{12} \right)=\cos \left( \dfrac{3\pi }{12}+\dfrac{2\pi }{12} \right)=\cos \left( \dfrac{\pi }{4}+\dfrac{\pi }{6} \right)
We will use the formula cos(A+B)=cosAcosBsinAsinB\cos (A+B)=\cos A\cos B-\sin A\sin B, we get,
cosπ4cosπ6sinπ4sinπ6\Rightarrow \cos \dfrac{\pi }{4}\cos \dfrac{\pi }{6}-\sin \dfrac{\pi }{4}\sin \dfrac{\pi }{6}
12.3212.12=3122.22\Rightarrow \dfrac{1}{\sqrt{2}}.\dfrac{\sqrt{3}}{2}-\dfrac{1}{\sqrt{2}}.\dfrac{1}{2}=\dfrac{\sqrt{3}-1}{2\sqrt{2}}.\dfrac{\sqrt{2}}{\sqrt{2}}
624\Rightarrow \dfrac{\sqrt{6}-\sqrt{2}}{4}
So,
cos(5π24)=1+6242\cos \left( \dfrac{5\pi }{24} \right)=\sqrt{\dfrac{1+\dfrac{\sqrt{6}-\sqrt{2}}{4}}{2}}
cos(5π24)=4+628=4+6222\cos \left( \dfrac{5\pi }{24} \right)=\sqrt{\dfrac{4+\sqrt{6}-\sqrt{2}}{8}}=\dfrac{\sqrt{4+\sqrt{6}-\sqrt{2}}}{2\sqrt{2}}-------(7)
Now, we will find the value of cos(π24)\cos \left( \dfrac{\pi }{24} \right), but first we will find the value of cos(π12)\cos \left( \dfrac{\pi }{12} \right),
Similarly, cos(π12)=cos(π3π4)\cos \left( \dfrac{\pi }{12} \right)=\cos \left( \dfrac{\pi }{3}-\dfrac{\pi }{4} \right)
Using the formula cos(A+B)=cosAcosB+sinAsinB\cos (A+B)=\cos A\cos B+\sin A\sin B, we have,
cosπ4cosπ3+sinπ4sinπ3\Rightarrow \cos \dfrac{\pi }{4}\cos \dfrac{\pi }{3}+\sin \dfrac{\pi }{4}\sin \dfrac{\pi }{3}
12.12+12.32=1+322.22\Rightarrow \dfrac{1}{\sqrt{2}}.\dfrac{1}{2}+\dfrac{1}{\sqrt{2}}.\dfrac{\sqrt{3}}{2}=\dfrac{1+\sqrt{3}}{2\sqrt{2}}.\dfrac{\sqrt{2}}{\sqrt{2}}
6+24\Rightarrow \dfrac{\sqrt{6}+\sqrt{2}}{4}
cos(π24)=1+6+242\cos \left( \dfrac{\pi }{24} \right)=\sqrt{\dfrac{1+\dfrac{\sqrt{6}+\sqrt{2}}{4}}{2}}
cos(π24)=4+6+28=4+6+222\cos \left( \dfrac{\pi }{24} \right)=\sqrt{\dfrac{4+\sqrt{6}+\sqrt{2}}{8}}=\dfrac{\sqrt{4+\sqrt{6}+\sqrt{2}}}{2\sqrt{2}}------(8)
Now, we will put equation (7) and (8) in equation (6), we get,
12(4+6222+4+6+222)\Rightarrow \dfrac{1}{2}\left( -\dfrac{\sqrt{4+\sqrt{6}-\sqrt{2}}}{2\sqrt{2}}+\dfrac{\sqrt{4+\sqrt{6}+\sqrt{2}}}{2\sqrt{2}} \right)
12(4+6+24+6222)\Rightarrow \dfrac{1}{2}\left( \dfrac{\sqrt{4+\sqrt{6}+\sqrt{2}}-\sqrt{4+\sqrt{6}-\sqrt{2}}}{2\sqrt{2}} \right)
(4+6+24+6242)\Rightarrow \left( \dfrac{\sqrt{4+\sqrt{6}+\sqrt{2}}-\sqrt{4+\sqrt{6}-\sqrt{2}}}{4\sqrt{2}} \right)
sin(π12)cos(3π8)=(4+6+24+6242)\sin \left( \dfrac{\pi }{12} \right)\cos \left( \dfrac{3\pi }{8} \right)=\left( \dfrac{\sqrt{4+\sqrt{6}+\sqrt{2}}-\sqrt{4+\sqrt{6}-\sqrt{2}}}{4\sqrt{2}} \right)------(9)
Therefore, the expression we have is,
sin(π12)cos(3π8)=12(sin(7π24)+sin(11π24))\sin \left( \dfrac{\pi }{12} \right)\cos \left( \dfrac{3\pi }{8} \right)=\dfrac{1}{2}\left( -\sin \left( \dfrac{7\pi }{24} \right)+\sin \left( \dfrac{11\pi }{24} \right) \right).
And the numerical value of the given expression is,
sin(π12)cos(3π8)=(4+6+24+6242)\sin \left( \dfrac{\pi }{12} \right)\cos \left( \dfrac{3\pi }{8} \right)=\left( \dfrac{\sqrt{4+\sqrt{6}+\sqrt{2}}-\sqrt{4+\sqrt{6}-\sqrt{2}}}{4\sqrt{2}} \right).

Note: The angles sin(π12)\sin \left( \dfrac{\pi }{12} \right) and cos(3π8)\cos \left( \dfrac{3\pi }{8} \right) should be simplified separately to avoid complex calculations and errors. Sign convention for different trigonometric functions should be taken properly as per the quadrant. Some basic values of sine and cosine function should be remembered for faster and exact calculations.