Solveeit Logo

Question

Question: How do you express \(\sin \left( {3\theta } \right)\) in terms of trigonometric functions of \(\thet...

How do you express sin(3θ)\sin \left( {3\theta } \right) in terms of trigonometric functions of θ\theta .

Explanation

Solution

Hint : The given problem requires us to express the sine of angle (3θ)\left( {3\theta } \right) in terms of trigonometric functions of angle θ\theta . So, we will first use the compound angle formulae of sine to expand the expression of sin(3θ)\sin \left( {3\theta } \right). Then, we will use the double angle formulae of sine and cosine to get to the required answer. Double angle formulae for sine and cosine are: sin(2x)=2sin(x)cos(x)\sin \left( {2x} \right) = 2\sin (x)\cos (x) and cos(2x)=(12sin2x)=(2cos2x1)\cos \left( {2x} \right) = \left( {1 - 2{{\sin }^2}x} \right) = \left( {2{{\cos }^2}x - 1} \right) respectively.

Complete step-by-step answer :
For simplifying sin(3θ)\sin \left( {3\theta } \right) to trigonometric functions of unit θ\theta , we first use the compound angle formulae of sine to convert sin(3θ)\sin \left( {3\theta } \right) to trigonometric functions of unit (2θ)\left( {2\theta } \right) and θ\theta . So, we know the compound angle formula for the sum of two angles is sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B. So, first splitting up the angle in two parts, we get,
sin(3θ)=sin(2θ+θ)\sin \left( {3\theta } \right) = \sin \left( {2\theta + \theta } \right)
Now, using the compound angle formula, we get,
sin(3θ)=sin2θcosθ+cos2θsinθ\Rightarrow \sin \left( {3\theta } \right) = \sin 2\theta \cos \theta + \cos 2\theta \sin \theta
Now, we have the expression of sin(3θ)\sin \left( {3\theta } \right) in terms of trigonometric functions of θ\theta and (2θ)\left( {2\theta } \right). So, we will convert the functions involving the angle (2θ)\left( {2\theta } \right) into trigonometric functions involving angle θ\theta using the double angle formulae of sine and cosine. We know that the double angle formulae of sine and cosine are: sin(2x)=2sin(x)cos(x)\sin \left( {2x} \right) = 2\sin (x)\cos (x) and cos(2x)=(12sin2x)=(2cos2x1)\cos \left( {2x} \right) = \left( {1 - 2{{\sin }^2}x} \right) = \left( {2{{\cos }^2}x - 1} \right) respectively. So, we get,
sin(3θ)=(2sinθcosθ)cosθ+(12sin2θ)sinθ\Rightarrow \sin \left( {3\theta } \right) = \left( {2\sin \theta \cos \theta } \right)\cos \theta + \left( {1 - 2{{\sin }^2}\theta } \right)\sin \theta
Now, simplifying the expression, we get,
sin(3θ)=2sinθcos2θ+sinθ2sin3θ\Rightarrow \sin \left( {3\theta } \right) = 2\sin \theta {\cos ^2}\theta + \sin \theta - 2{\sin ^3}\theta
Now, we use the trigonometric identity cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1. So, we get,
sin(3θ)=2sinθ(1sin2θ)+sinθ2sin3θ\Rightarrow \sin \left( {3\theta } \right) = 2\sin \theta \left( {1 - {{\sin }^2}\theta } \right) + \sin \theta - 2{\sin ^3}\theta
Opening the brackets, we get,
sin(3θ)=2sinθ2sin3θ+sinθ2sin3θ\Rightarrow \sin \left( {3\theta } \right) = 2\sin \theta - 2{\sin ^3}\theta + \sin \theta - 2{\sin ^3}\theta
Adding up the like terms, we get,
sin(3θ)=3sinθ4sin3θ\Rightarrow \sin \left( {3\theta } \right) = 3\sin \theta - 4{\sin ^3}\theta
Hence, sin(3θ)\sin \left( {3\theta } \right) in terms of trigonometric functions of unit θ\theta is(3sinθ4sin3θ)\left( {3\sin \theta - 4{{\sin }^3}\theta } \right).

Note : The above question can also be solved by using compound angle formulae instead of double angle formulae such as sin(A+B)=(sinAcosB+cosAsinB)\sin (A + B) = \left( {\sin A\cos B + \cos A\sin B} \right) and cos(A+B)=(cosAcosBsinAsinB)\cos (A + B) = \left( {\cos A\cos B - \sin A\sin B} \right). This method can also be used to get to the answer of the given problem but involves more calculations. We must take care of simplifying rules and calculations while solving such problems.