Solveeit Logo

Question

Question: How do you express \(\dfrac{1}{{{x}^{6}}-{{x}^{3}}}\) in partial fractions?...

How do you express 1x6x3\dfrac{1}{{{x}^{6}}-{{x}^{3}}} in partial fractions?

Explanation

Solution

Firstly, we need to take out the common factor x3{{x}^{3}} from the denominator to get 1x3(x31)\dfrac{1}{{{x}^{3}}\left( {{x}^{3}}-1 \right)}. On adding and subtracting x3{{x}^{3}} in the numerator, the fraction will be split as 1x3+1(x31)-\dfrac{1}{{{x}^{3}}}+\dfrac{1}{\left( {{x}^{3}}-1 \right)}. Using the algebraic identity a3b3=(ab)(a3+ab+b3){{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{3}}+ab+{{b}^{3}} \right), the fraction 1(x31)\dfrac{1}{\left( {{x}^{3}}-1 \right)} can be written as 1(x1)(x2+x+1)\dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}. Finally, on writing 1(x1)(x2+x+1)=a(x1)+bx+c(x2+x+1)\dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{a}{\left( x-1 \right)}+\dfrac{bx+c}{\left( {{x}^{2}}+x+1 \right)} and on equating the coefficients by comparing, we will get the values of aa, bb and cc and hence the given fraction will be finally expressed in the partial fractions.

Complete step by step solution:
Let us write the expression given in the above question as
E=1x6x3\Rightarrow E=\dfrac{1}{{{x}^{6}}-{{x}^{3}}}
Taking x3{{x}^{3}} common in the denominator, we get
E=1x3(x31)\Rightarrow E=\dfrac{1}{{{x}^{3}}\left( {{x}^{3}}-1 \right)}
Adding and subtracting x3{{x}^{3}} in the numerator, we get

& \Rightarrow E=\dfrac{1-{{x}^{3}}+{{x}^{3}}}{{{x}^{3}}\left( {{x}^{3}}-1 \right)} \\\ & \Rightarrow E=\dfrac{1-{{x}^{3}}}{{{x}^{3}}\left( {{x}^{3}}-1 \right)}+\dfrac{{{x}^{3}}}{{{x}^{3}}\left( {{x}^{3}}-1 \right)} \\\ & \Rightarrow E=-\dfrac{1}{{{x}^{3}}}+\dfrac{1}{\left( {{x}^{3}}-1 \right)}........\left( i \right) \\\ \end{aligned}$$ Now, let $$u=\dfrac{1}{\left( {{x}^{3}}-1 \right)}.......\left( ii \right)$$. $\Rightarrow u=\dfrac{1}{\left( {{x}^{3}}-{{1}^{3}} \right)}$ We know that ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{3}}+ab+{{b}^{3}} \right)$. Applying this in the denominator, we get $$\begin{aligned} & \Rightarrow u=\dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+{{1}^{2}} \right)} \\\ & \Rightarrow u=\dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)} \\\ \end{aligned}$$ For splitting the above into partial fractions, we write $$\Rightarrow \dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{a}{\left( x-1 \right)}+\dfrac{bx+c}{\left( {{x}^{2}}+x+1 \right)}......\left( iii \right)$$ Taking LCM on the RHS we get $$\begin{aligned} & \Rightarrow \dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{a\left( {{x}^{2}}+x+1 \right)+\left( bx+c \right)\left( x-1 \right)}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)} \\\ & \Rightarrow \dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{a{{x}^{2}}+ax+a+b{{x}^{2}}-bx+cx-c}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)} \\\ & \Rightarrow \dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{\left( a+b \right){{x}^{2}}+\left( a-b+c \right)x+\left( a-c \right)}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)} \\\ \end{aligned}$$ Writing the numerator on the LHS in terms of that on the RHS, we get $$\Rightarrow \dfrac{\left( 0 \right){{x}^{2}}+\left( 0 \right)x+1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{\left( a+b \right){{x}^{2}}+\left( a-b+c \right)x+\left( a-c \right)}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}$$ On equating the coefficients of ${{x}^{2}}$, and the constant terms, we get $\begin{aligned} & \Rightarrow a+b=0 \\\ & \Rightarrow b=-a......\left( iv \right) \\\ \end{aligned}$ On equating the coefficients of $x$, we get $\Rightarrow a-b+c=0$ Substituting (i) in the above equation, we get $\begin{aligned} & \Rightarrow a-\left( -a \right)+c=0 \\\ & \Rightarrow a+a+c=0 \\\ & \Rightarrow 2a+c=0 \\\ & \Rightarrow c=-2a......\left( v \right) \\\ \end{aligned}$ Now, equating the constant terms, we get $\Rightarrow a-c=1$ Substituting (v) we get $\begin{aligned} & \Rightarrow a-\left( -2a \right)=1 \\\ & \Rightarrow a+2a=1 \\\ & \Rightarrow 3a=1 \\\ & \Rightarrow a=\dfrac{1}{3}......\left( vi \right) \\\ \end{aligned}$ Substituting (vi) in (iv) we get $\Rightarrow b=-\dfrac{1}{3}.......\left( vii \right)$ Now, substituting (vi) in (v) we get $$\Rightarrow c=-\dfrac{2}{3}........\left( viii \right)$$ Substituting (vi), (vii) and (viii) in (iii) we get $$\begin{aligned} & \Rightarrow \dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{\dfrac{1}{3}}{\left( x-1 \right)}+\dfrac{-\dfrac{1}{3}x-\dfrac{2}{3}}{\left( {{x}^{2}}+x+1 \right)} \\\ & \Rightarrow \dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{1}{3}\left( \dfrac{1}{\left( x-1 \right)}-\dfrac{x+2}{\left( {{x}^{2}}+x+1 \right)} \right) \\\ & \Rightarrow u=\dfrac{1}{3}\left( \dfrac{1}{\left( x-1 \right)}-\dfrac{x+2}{\left( {{x}^{2}}+x+1 \right)} \right) \\\ \end{aligned}$$ Therefore, from (i) the given expression becomes $\begin{aligned} & \Rightarrow E=-\dfrac{1}{{{x}^{3}}}+\dfrac{1}{3}\left( \dfrac{1}{\left( x-1 \right)}-\dfrac{x+2}{\left( {{x}^{2}}+x+1 \right)} \right) \\\ & \Rightarrow E=\dfrac{1}{3\left( x-1 \right)}-\dfrac{x+2}{3\left( {{x}^{2}}+x+1 \right)}-\dfrac{1}{{{x}^{3}}} \\\ \end{aligned}$ Hence, the given expression is expressed in partial fractions. **Note:** Do not end your solution at the split form $$-\dfrac{1}{{{x}^{3}}}+\dfrac{1}{\left( {{x}^{3}}-1 \right)}$$ since the fraction $$\dfrac{1}{\left( {{x}^{3}}-1 \right)}$$ can be further split into the partial fractions. Whenever the denominator of a fraction can be factorized, it can be split into the partial fractions. We must note that the degree of the numerator of a partial fraction is always one less than that of the denominator.