Solveeit Logo

Question

Question: How do you express \(\dfrac{1}{{{x^4} + 1}}\) in partial fractions?...

How do you express 1x4+1\dfrac{1}{{{x^4} + 1}} in partial fractions?

Explanation

Solution

This problem deals with reducing the given complex fraction into partial fractions. In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction is an operation that consists of expressing the fraction as a sum of a polynomial and one or several fractions with a simpler denominator.

Complete step-by-step answer:
Given a complex fraction which is as given below:
1x4+1\Rightarrow \dfrac{1}{{{x^4} + 1}}
Now consider the denominator of the above given partial fraction, as shown below:
x4+1\Rightarrow {x^4} + 1
Now this a polynomial of degree four, and this can be reduced into factors of polynomials of degree two, as shown below:
x4+1=(x22x+1)(x2+2x+1)\Rightarrow {x^4} + 1 = \left( {{x^2} - \sqrt 2 x + 1} \right)\left( {{x^2} + \sqrt 2 x + 1} \right)
Now considering the given complex fraction as given below:
1x4+1=1(x22x+1)(x2+2x+1)\Rightarrow \dfrac{1}{{{x^4} + 1}} = \dfrac{1}{{\left( {{x^2} - \sqrt 2 x + 1} \right)\left( {{x^2} + \sqrt 2 x + 1} \right)}}
Now splitting the fraction on the right hand side of the equation, as shown:
1x4+1=Ax+B(x22x+1)+Cx+D(x2+2x+1)\Rightarrow \dfrac{1}{{{x^4} + 1}} = \dfrac{{Ax + B}}{{\left( {{x^2} - \sqrt 2 x + 1} \right)}} + \dfrac{{Cx + D}}{{\left( {{x^2} + \sqrt 2 x + 1} \right)}}
Now simplifying the right hand side of the equation:
1x4+1=Ax+B(x2+2x+1)+Cx+D(x22x+1)(x22x+1)(x2+2x+1)\Rightarrow \dfrac{1}{{{x^4} + 1}} = \dfrac{{Ax + B\left( {{x^2} + \sqrt 2 x + 1} \right) + Cx + D\left( {{x^2} - \sqrt 2 x + 1} \right)}}{{\left( {{x^2} - \sqrt 2 x + 1} \right)\left( {{x^2} + \sqrt 2 x + 1} \right)}}
We know that denominators are equal, now equating the numerators, as shown:
(Ax+B)(x2+2x+1)+(Cx+D)(x22x+1)=1\Rightarrow \left( {Ax + B} \right)\left( {{x^2} + \sqrt 2 x + 1} \right) + \left( {Cx + D} \right)\left( {{x^2} - \sqrt 2 x + 1} \right) = 1
Ax3+2Ax2+Ax+Bx2+2Bx+B+Cx32Cx2+Cx+Dx22Dx+D=1\Rightarrow A{x^3} + \sqrt 2 A{x^2} + Ax + B{x^2} + \sqrt 2 Bx + B + C{x^3} - \sqrt 2 C{x^2} + Cx + D{x^2} - \sqrt 2 Dx + D = 1
Now grouping the like terms and the unlike terms together:
(A+C)x3+(2A+B2C+D)x2+(A+2B+C2D)x+(B+D)=1\Rightarrow \left( {A + C} \right){x^3} + \left( {\sqrt 2 A + B - \sqrt 2 C + D} \right){x^2} + \left( {A + \sqrt 2 B + C - \sqrt 2 D} \right)x + \left( {B + D} \right) = 1
Here on the right hand side, there is no x3{x^3} term or x2{x^2} term or an xx term, only a constant which is 1.
Hence equating all the coefficients of x3{x^3} term,x2{x^2} term and xx term to zero:
A+C=0\Rightarrow A + C = 0
2A+B2C+D=0\Rightarrow \sqrt 2 A + B - \sqrt 2 C + D = 0
A+2B+C2D=0\Rightarrow A + \sqrt 2 B + C - \sqrt 2 D = 0
B+D=1\Rightarrow B + D = 1
Now we have four equations and four variables, hence solving for the values of A,B,CA,B,C and DD:
A=122,B=12,C=122,D=12\Rightarrow A = \dfrac{{ - 1}}{{2\sqrt 2 }},B = \dfrac{1}{2},C = \dfrac{1}{{2\sqrt 2 }},D = \dfrac{1}{2}
Now substituting the values of A,B,CA,B,C and DD in the partial fractions as shown:
1x4+1=122x+12(x22x+1)+122x+12(x2+2x+1)\Rightarrow \dfrac{1}{{{x^4} + 1}} = \dfrac{{\dfrac{{ - 1}}{{2\sqrt 2 }}x + \dfrac{1}{2}}}{{\left( {{x^2} - \sqrt 2 x + 1} \right)}} + \dfrac{{\dfrac{1}{{2\sqrt 2 }}x + \dfrac{1}{2}}}{{\left( {{x^2} + \sqrt 2 x + 1} \right)}}

1x4+1=2x+24(x22x+1)+2x+24(x2+2x+1) \Rightarrow \dfrac{1}{{{x^4} + 1}} = \dfrac{{ - \sqrt 2 x + 2}}{{4\left( {{x^2} - \sqrt 2 x + 1} \right)}} + \dfrac{{\sqrt 2 x + 2}}{{4\left( {{x^2} + \sqrt 2 x + 1} \right)}}

Note:
Please note that partial fractions can only be done if the degree of the numerator is strictly less than the degree of the denominator. Partial fractions are a way of breaking apart fractions with polynomials in them. The process of taking a rational expression and decomposing it into simpler rational expressions that we can add or subtract to get the original rational expression is called partial fraction decomposition.