Solveeit Logo

Question

Question: How do you express \[{\cot ^3}\theta - {\cos ^2}\theta - {\tan ^3}\theta \] in terms of non-exponent...

How do you express cot3θcos2θtan3θ{\cot ^3}\theta - {\cos ^2}\theta - {\tan ^3}\theta in terms of non-exponential trigonometric function?

Explanation

Solution

To solve this question first we use the algebraic identity and convert the equation in sin and cos trigonometric function and then take LCM in the denominator and use the identity and formulas and try to convert the whole relations in the power one and that is the final answer.

Complete step-by-step answer:
Given,
cot3θcos2θtan3θ{\cot ^3}\theta - {\cos ^2}\theta - {\tan ^3}\theta
We have to express this term in non-exponential trigonometric functions.
First we are using the algebraic identity a3b3=(ab)(a2+b2+ab){a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)
We have to use this identity cotθ\cot \theta and tanθ\tan \theta
cot3θcos2θtan3θ\Rightarrow {\cot ^3}\theta - {\cos ^2}\theta - {\tan ^3}\theta
Using the identity of a3b3{a^3} - {b^3}
(cotθtanθ)(cot2θ+tan2θ+cotθtanθ)cos2θ\Rightarrow \left( {\cot \theta - \tan \theta } \right)\left( {{{\cot }^2}\theta + {{\tan }^2}\theta + \cot \theta \tan \theta } \right) - {\cos ^2}\theta
We know that multiplication of cotθ\cot \theta and tanθ\tan \theta is 1.
Now we are converting all the functions in sin and cos function.
(cosθsinθsinθcosθ)(cos2θsin2θ+sin2θcos2θ+1)cos2θ\Rightarrow \left( {\dfrac{{\cos \theta }}{{\sin \theta }} - \dfrac{{\sin \theta }}{{\cos \theta }}} \right)\left( {\dfrac{{{{\cos }^2}\theta }}{{{{\sin }^2}\theta }} + \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} + 1} \right) - {\cos ^2}\theta
Now taking LCM in denominator
(cos2θsin2θsinθcosθ)(cos4θ+sin4θsin2θcos2θ+1)cos2θ\Rightarrow \left( {\dfrac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{\sin \theta \cos \theta }}} \right)\left( {\dfrac{{{{\cos }^4}\theta + {{\sin }^4}\theta }}{{{{\sin }^2}\theta {{\cos }^2}\theta }} + 1} \right) - {\cos ^2}\theta
Converting first multiplication in double angle by multiplying and dividing by 2
On using the formula of trigonometry cos2θsin2θ=cos2θ{\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta and 2sinθcosθ=sin2θ2\sin \theta \cos \theta = \sin 2\theta
(2cos2θsin2θ)(cos4θ+sin4θsin2θcos2θ+1)cos2θ\Rightarrow \left( {\dfrac{{2\cos 2\theta }}{{\sin 2\theta }}} \right)\left( {\dfrac{{{{\cos }^4}\theta + {{\sin }^4}\theta }}{{{{\sin }^2}\theta {{\cos }^2}\theta }} + 1} \right) - {\cos ^2}\theta
Now taking the LCM in the second multiplication and adding and subtracting the same part one time
(2cos2θsin2θ)(cos4θ+sin4θ+2sin2θcos2θsin2θcos2θsin2θcos2θ)cos2θ\Rightarrow \left( {\dfrac{{2\cos 2\theta }}{{\sin 2\theta }}} \right)\left( {\dfrac{{{{\cos }^4}\theta + {{\sin }^4}\theta + 2{{\sin }^2}\theta {{\cos }^2}\theta - {{\sin }^2}\theta {{\cos }^2}\theta }}{{{{\sin }^2}\theta {{\cos }^2}\theta }}} \right) - {\cos ^2}\theta
Now making the perfect square in second multiple.
(2cos2θsin2θ)((sin2θ+cos2θ)2sin2θcos2θsin2θcos2θ)cos2θ\Rightarrow \left( {\dfrac{{2\cos 2\theta }}{{\sin 2\theta }}} \right)\left( {\dfrac{{{{\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)}^2} - {{\sin }^2}\theta {{\cos }^2}\theta }}{{{{\sin }^2}\theta {{\cos }^2}\theta }}} \right) - {\cos ^2}\theta
Now using the identity of trigonometry sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
(2cos2θsin2θ)(1sin2θcos2θsin2θcos2θ)cos2θ\Rightarrow \left( {\dfrac{{2\cos 2\theta }}{{\sin 2\theta }}} \right)\left( {\dfrac{{1 - {{\sin }^2}\theta {{\cos }^2}\theta }}{{{{\sin }^2}\theta {{\cos }^2}\theta }}} \right) - {\cos ^2}\theta
Now using the formulas cos2θsin2θ=cot2θ\dfrac{{\cos 2\theta }}{{\sin 2\theta }} = \cot 2\theta , cos2θ=1+cos2θ2{\cos ^2}\theta = \dfrac{{1 + \cos 2\theta }}{2} and splitting the second multiplication.
(2cot2θ)(1sin2θcos2θ1)1+cos2θ2\Rightarrow \left( {2\cot 2\theta } \right)\left( {\dfrac{1}{{{{\sin }^2}\theta {{\cos }^2}\theta }} - 1} \right) - \dfrac{{1 + \cos 2\theta }}{2}
Multiplying and dividing by 4 in the second multiplication
(2cot2θ)(4sin22θ1)1+cos2θ2\Rightarrow \left( {2\cot 2\theta } \right)\left( {\dfrac{4}{{{{\sin }^2}2\theta }} - 1} \right) - \dfrac{{1 + \cos 2\theta }}{2}
Now using the formula sin22θ=1cos4θ2{\sin ^2}2\theta = \dfrac{{1 - \cos 4\theta }}{2}
(2cot2θ)(81cos2θ1)1+cos2θ2\Rightarrow \left( {2\cot 2\theta } \right)\left( {\dfrac{8}{{1 - \cos 2\theta }} - 1} \right) - \dfrac{{1 + \cos 2\theta }}{2}
Final answer:
(2cot2θ)(81cos2θ1)1+cos2θ2\Rightarrow \left( {2\cot 2\theta } \right)\left( {\dfrac{8}{{1 - \cos 2\theta }} - 1} \right) - \dfrac{{1 + \cos 2\theta }}{2} is the non-exponential expression of cot3θcos2θtan3θ{\cot ^3}\theta - {\cos ^2}\theta - {\tan ^3}\theta

Note: This question is tricky as well as difficult you must solve this type of question. To solve these types of questions we must know all the formulas, identities, and the relation between all the trigonometric relations. There are many places where students often make mistakes to take a look at clearly.