Solveeit Logo

Question

Question: How do you express \(\cos \theta -{{\cos }^{2}}\theta +\sec \theta \) in terms of \(\sin \theta \)?...

How do you express cosθcos2θ+secθ\cos \theta -{{\cos }^{2}}\theta +\sec \theta in terms of sinθ\sin \theta ?

Explanation

Solution

We first try to establish the trigonometric identity sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1. We find the value of cos2θ{{\cos }^{2}}\theta in the form of sinθ\sin \theta where cos2θ=1sin2θ{{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta . We also have cosθ=1sin2θ\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }. We only simplify the cosθ+secθ\cos \theta +\sec \theta part and put the values to find cosθcos2θ+secθ\cos \theta -{{\cos }^{2}}\theta +\sec \theta in terms of sinθ\sin \theta .

Complete step-by-step answer:
We have the identity theorem of trigonometric values where sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1.
From the relation we get cos2θ=1sin2θ{{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta .
We take square root value on both sides to get

& \sqrt{{{\cos }^{2}}\theta }=\sqrt{1-{{\sin }^{2}}\theta } \\\ & \Rightarrow \cos \theta =\sqrt{1-{{\sin }^{2}}\theta } \\\ \end{aligned}$$ We first try to simplify the equation $\cos \theta -{{\cos }^{2}}\theta +\sec \theta $. We keep the term $-{{\cos }^{2}}\theta $ in $\cos \theta -{{\cos }^{2}}\theta +\sec \theta $ as it is. We simplify the rest of the expression $\cos \theta +\sec \theta $. We know the relation where $\sec \theta =\dfrac{1}{\cos \theta }$. We put the value and get $\cos \theta +\sec \theta =\cos \theta +\dfrac{1}{\cos \theta }$. We simplify the equation to get $\cos \theta +\dfrac{1}{\cos \theta }=\dfrac{{{\cos }^{2}}\theta +1}{\cos \theta }$. Now the final expression becomes $\cos \theta -{{\cos }^{2}}\theta +\sec \theta =\dfrac{{{\cos }^{2}}\theta +1}{\cos \theta }-{{\cos }^{2}}\theta $. Now we place the values of $${{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta $$ and $$\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }$$ to get $\begin{aligned} & \cos \theta -{{\cos }^{2}}\theta +\sec \theta \\\ & =\dfrac{{{\cos }^{2}}\theta +1}{\cos \theta }-{{\cos }^{2}}\theta \\\ & =\dfrac{1-{{\sin }^{2}}\theta +1}{\sqrt{1-{{\sin }^{2}}\theta }}-\left( 1-{{\sin }^{2}}\theta \right) \\\ \end{aligned}$ Now we simplify the equation to get $\begin{aligned} & \cos \theta -{{\cos }^{2}}\theta +\sec \theta \\\ & =\dfrac{1-{{\sin }^{2}}\theta +1}{\sqrt{1-{{\sin }^{2}}\theta }}-\left( 1-{{\sin }^{2}}\theta \right) \\\ & ={{\sin }^{2}}\theta +\dfrac{2-{{\sin }^{2}}\theta }{\sqrt{1-{{\sin }^{2}}\theta }}-1 \\\ \end{aligned}$ The expression of $\cos \theta -{{\cos }^{2}}\theta +\sec \theta $ in terms of $\sin \theta $ is ${{\sin }^{2}}\theta +\dfrac{2-{{\sin }^{2}}\theta }{\sqrt{1-{{\sin }^{2}}\theta }}-1$. **Note:** The square root portion can’t be simplified further. We keep it as it is. For the simplified form we didn’t take the negative version. The modulus of the function omits the possibility.