Solveeit Logo

Question

Question: How do you express \(\cos 4\theta \) in terms of \(\cos 2\theta ?\)...

How do you express cos4θ\cos 4\theta in terms of cos2θ?\cos 2\theta ?

Explanation

Solution

Split 4θ4\theta into two 2θ2\theta and then apply the cosine compound angle formula and further simplify, use some trigonometric identities in order to simplify it.
The compound formula for cosine function which will be used is
cos(a+b)=cosacosbsinasinb\cos (a + b) = \cos a\cos b - \sin a\sin b , where a  and  ba\;{\text{and}}\;b are respective arguments of the cosine function.

Complete step by step solution:
In order to express cos4θ\cos 4\theta in terms of cos2θ\cos 2\theta , we can clearly see that we need 2θ2\theta as the argument, so splitting 4θ4\theta into 2θ2\theta
4θ=2θ+2θ\Rightarrow 4\theta = 2\theta + 2\theta
Now taking the cosine function both sides, we will get
cos4θ=cos(2θ+2θ)\Rightarrow \cos 4\theta = \cos (2\theta + 2\theta )
Do we have seen this type of expression that is cos(2θ+2θ)\cos (2\theta + 2\theta ) somewhere else?
Yes this is a trigonometric identity and belongs to the compound angle formula for cosine function which is given as
cos(a+b)=cosacosbsinasinb\cos (a + b) = \cos a\cos b - \sin a\sin b
With the help of this formula simplifying the equation further,
cos4θ=cos(2θ+2θ) cos4θ=cos2θcos2θsin2θsin2θ cos4θ=cos22θsin22θ  \Rightarrow \cos 4\theta = \cos (2\theta + 2\theta ) \\\ \Rightarrow \cos 4\theta = \cos 2\theta \cos 2\theta - \sin 2\theta \sin 2\theta \\\ \Rightarrow \cos 4\theta = {\cos ^2}2\theta - {\sin ^2}2\theta \\\
Now from the identity sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 we know that
sin2x=1cos2x{\sin ^2}x = 1 - {\cos ^2}x
Substituting this in above equation we will get,
$
\Rightarrow \cos 4\theta = {\cos ^2}2\theta - {\sin ^2}2\theta \\
\Rightarrow \cos 4\theta = {\cos ^2}2\theta - (1 - {\cos ^2}2\theta ) \\

\Rightarrow \cos 4\theta = {\cos ^2}2\theta - 1 + {\cos ^2}2\theta \\
\Rightarrow \cos 4\theta = 2{\cos ^2}2\theta - 1 \\
So, **So,\cos 4\theta isexpressedintermsofis expressed in terms of\cos 2\theta asas2{\cos ^2}2\theta - 1$**

Note: There is one more way to express cos4θ\cos 4\theta in terms of cos2θ\cos 2\theta , let us see that from the trigonometric identity sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1, we can write that
cos2x=1sin2x cosx=1sin2x  \Rightarrow {\cos ^2}x = 1 - {\sin ^2}x \\\ \Rightarrow \cos x = \sqrt {1 - {{\sin }^2}x} \\\
With help of this we can write,
cos4θ=1sin24θ\Rightarrow \cos 4\theta = \sqrt {1 - {{\sin }^2}4\theta }
Using here the algebraic identity a2b2=(a+b)(ab){a^2} - {b^2} = (a + b)(a - b) to simplify further
cos4θ=12sin24θ cos4θ=(1+sin4θ)(1sin4θ)  \Rightarrow \cos 4\theta = \sqrt {{1^2} - {{\sin }^2}4\theta } \\\ \Rightarrow \cos 4\theta = \sqrt {(1 + \sin 4\theta )(1 - \sin 4\theta )} \\\
Now applying the compound angle formula of sine angle which is given as
sin2x=2sinxcosx\sin 2x = 2\sin x\cos x
With help of this simplifying the equation further, we will get
cos4θ=(1+sin2(2θ))(1sin2(2θ)) cos4θ=(1+2sin2θcos2θ)(12sin2θcos2θ)  \Rightarrow \cos 4\theta = \sqrt {(1 + \sin 2(2\theta ))(1 - \sin 2(2\theta ))} \\\ \Rightarrow \cos 4\theta = \sqrt {(1 + 2\sin 2\theta \cos 2\theta )(1 - 2\sin 2\theta \cos 2\theta )} \\\
Now from sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1, we will get
cos4θ=(1+2sin2θcos2θ)(12sin2θcos2θ) cos4θ=(sin22θ+cos22θ+2sin2θcos2θ)(sin22θ+cos22θ2sin2θcos2θ)  \Rightarrow \cos 4\theta = \sqrt {(1 + 2\sin 2\theta \cos 2\theta )(1 - 2\sin 2\theta \cos 2\theta )} \\\ \Rightarrow \cos 4\theta = \sqrt {({{\sin }^2}2\theta + {{\cos }^2}2\theta + 2\sin 2\theta \cos 2\theta )({{\sin }^2}2\theta + {{\cos }^2}2\theta - 2\sin 2\theta \cos 2\theta )} \\\
From the algebraic identity (a+b)2=(a2+b2+2ab)  and  (ab)2=(a2+b22ab){(a + b)^2} = ({a^2} + {b^2} + 2ab)\;{\text{and}}\;{(a - b)^2} = ({a^2} + {b^2} - 2ab) we can write

cos4θ=(cos22θ+sin22θ+2sin2θcos2θ)(cos22θ+sin22θ2sin2θcos2θ) cos4θ=(cos2θ+sin2θ)2(cos2θsin2θ)2 \Rightarrow \cos 4\theta = \sqrt {({{\cos }^2}2\theta + {{\sin }^2}2\theta + 2\sin 2\theta \cos 2\theta )({{\cos }^2}2\theta + {{\sin }^2}2\theta - 2\sin 2\theta \cos 2\theta )} \\\ \Rightarrow \cos 4\theta = \sqrt {{{(\cos 2\theta + \sin 2\theta )}^2}{{(\cos 2\theta - \sin 2\theta )}^2}} \\\

We can further write it as

cos4θ=(cos2θ+sin2θ)2(cos2θsin2θ)2 cos4θ=(cos2θ+sin2θ)(cos2θsin2θ) \Rightarrow \cos 4\theta = \sqrt {{{(\cos 2\theta + \sin 2\theta )}^2}{{(\cos 2\theta - \sin 2\theta )}^2}} \\\ \Rightarrow \cos 4\theta = (\cos 2\theta + \sin 2\theta )(\cos 2\theta - \sin 2\theta ) \\\

Again from a2b2=(a+b)(ab){a^2} - {b^2} = (a + b)(a - b) we can write

cos4θ=(cos2θ+sin2θ)(cos2θsin2θ) cos4θ=cos22θsin22θ \Rightarrow \cos 4\theta = (\cos 2\theta + \sin 2\theta )(\cos 2\theta - \sin 2\theta ) \\\ \Rightarrow \cos 4\theta = {\cos ^2}2\theta - {\sin ^2}2\theta \\\

Now from sin2x+cos2x=1sin2x=1cos2x{\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x

cos4θ=cos22θsin22θ cos4θ=cos22θ(1cos22θ) cos4θ=cos22θ1+cos22θ cos4θ=2cos22θ1 \Rightarrow \cos 4\theta = {\cos ^2}2\theta - {\sin ^2}2\theta \\\ \Rightarrow \cos 4\theta = {\cos ^2}2\theta - (1 - {\cos ^2}2\theta ) \\\ \Rightarrow \cos 4\theta = {\cos ^2}2\theta - 1 + {\cos ^2}2\theta \\\ \Rightarrow \cos 4\theta = 2{\cos ^2}2\theta - 1 \\\

So we again expressed cos4θ\cos 4\theta in terms of cos2θ\cos 2\theta , but this method is a bit lengthy and complex, go for the upper one.