Question
Question: How do you expand\[{\left( {x + y} \right)^{10}}\]?...
How do you expand(x+y)10?
Solution
In this question we have to expand the given expression by using binomial formula which is given by(a+b)n=nC0an(b)0+nC1an−1(b)1+nC2an−2(b)2+nC3an−3(b)3+.......+nCna0(b)n,
Now substituting theaandbvalue from the given expression and using the formulanCr=r!(n−r)!n! we will get the required result.
Complete step-by-step answer:
Binomial expansion is given by the formula, (a+b)n=nC0an(b)0+nC1an−1(b)1+nC2an−2(b)2+nC3an−3(b)3+.......+nCna0(b)n,
WherenC0,nC1,nC2,nC3……..andnCnare the binomial coefficients .
So, now given expression is(x+y)10,
Now substitutingaandbin the expansion wherea=x,b=yand n=10, then we get,
{\left( {x + y} \right)^{10}} = {}^{10}{C_0}{x^{10}}{\left( y \right)^0} + {}^{10}{C_1}{x^{10 - 1}}{\left( y \right)^1} + {}^{10}{C_2}{x^{10 - 2}}{\left( y \right)^2} + {}^{10}{C_3}{x^{10 - 3}}{\left( y \right)^3} + {}^{10}{C_4}{x^{10 - 4}}{\left( y \right)^4} + {}^{10}{C_5}{x^{10 - 5}}{\left( y \right)^5}$$$$ + {}^{10}{C_6}{x^{10 - 6}}{\left( y \right)^6} + {}^{10}{C_7}{x^{10 - 7}}{\left( y \right)^7} + {}^{10}{C_8}{x^{10 - 8}}{\left( y \right)^8} + {}^{10}{C_9}{x^{10 - 9}}{\left( y \right)^9} + {}^{10}{C_{10}}{x^{10 - 10}}{\left( y \right)^{10}},
Now simplifying the expansion using the formulanCr=r!(n−r)!n!, we get,
\Rightarrow $$$${\left( {x + y} \right)^{10}} = {x^{10}}{\left( y \right)^0} + 10{x^9}{\left( y \right)^1} + \dfrac{{10!}}{{2!\left( {10 - 8} \right)!}}{x^8}{\left( y \right)^2} + \dfrac{{10!}}{{3!\left( {10 - 3} \right)!}}{x^7}{\left( y \right)^3} + \dfrac{{10!}}{{4!\left( {10 - 4} \right)!}}{x^6}{\left( y \right)^4} + $$$$\dfrac{{10!}}{{5!\left( {10 - 5} \right)!}}{x^5}{\left( y \right)^5} + \dfrac{{10!}}{{6!\left( {10 - 6} \right)!}}{x^4}{\left( y \right)^6} + \dfrac{{10!}}{{7!\left( {10 - 7} \right)!}}{x^3}{\left( y \right)^7} + \dfrac{{10!}}{{8!\left( {10 - 8} \right)!}}{x^2}{\left( y \right)^8} + \dfrac{{10!}}{{9!\left( {10 - 9} \right)!}}{x^1}{\left( y \right)^9} + $$$$\dfrac{{10!}}{{10!\left( {10 - 10} \right)!}}{x^0}{\left( y \right)^{10}},
Now simplifying the expansion we get,
\Rightarrow $$$${\left( {x + y} \right)^{10}} = {x^{10}}{\left( y \right)^0} + 10{x^9}{\left( y \right)^1} + \dfrac{{10!}}{{2!\left( 2 \right)!}}{x^8}{\left( y \right)^2} + \dfrac{{10!}}{{3!\left( 7 \right)!}}{x^7}{\left( y \right)^3} + \dfrac{{10!}}{{4!\left( 6 \right)!}}{x^6}{\left( y \right)^4} + \dfrac{{10!}}{{5!\left( 5 \right)!}}{x^5}{\left( y \right)^5} + $$$$\dfrac{{10!}}{{6!\left( 4 \right)!}}{x^4}{\left( y \right)^6} + \dfrac{{10!}}{{7!\left( 3 \right)!}}{x^3}{\left( y \right)^7} + \dfrac{{10!}}{{8!\left( 2 \right)!}}{x^2}{\left( y \right)^8} + \dfrac{{10!}}{{9!\left( 1 \right)!}}{x^1}{\left( y \right)^9} + \dfrac{{10!}}{{10!\left( 0 \right)!}}{x^0}{\left( y \right)^{10}}
Now applying factorial formula i.e.,n!=n×(n−1)×(n−2)×........×3×2×1,we get,
\Rightarrow {\left( {x + y} \right)^{10}} = {x^{10}}{\left( y \right)^0} + 10{x^9}{\left( y \right)^1} + \dfrac{{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{\left( {2 \times 1} \right)\left( {8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1} \right)}}{x^8}{\left( y \right)^2} + $$$$\dfrac{{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{\left( {3 \times 2 \times 1} \right)\left( {7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1} \right)}}{x^7}{\left( y \right)^3} + \dfrac{{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{\left( {4 \times 3 \times 2 \times 1} \right)\left( {6 \times 5 \times 4 \times 3 \times 2 \times 1} \right)}}{x^6}{\left( y \right)^4} + $$$$\dfrac{{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{\left( {5 \times 4 \times 3 \times 2 \times 1} \right)\left( {5 \times 4 \times 3 \times 2 \times 1} \right)}}{x^5}{\left( y \right)^5} + \dfrac{{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{\left( {6 \times 5 \times 4 \times 3 \times 2 \times 1} \right)\left( {4 \times 3 \times 2 \times 1} \right)}}{x^4}{\left( y \right)^6} +
(7×6×5×4×3×2×1)(3×2×1)10×9×8×7×6×5×4×3×2×1x3(y)7+(8×7×6×5×4×3×2×1)(2×1)10×9×8×7×6×5×4×3×2×1x2(y)8+
(9×8×7×6×5×4×3×2×1)(1)10×9×8×7×6×5×4×3×2×1x1(y)9+x0(y)10.
Now simplifying by multiplying and dividing we get,
\Rightarrow $$$${\left( {x + y} \right)^{10}} = {x^{10}} + 10{x^9}y + 45{x^8}{y^2} + 120{x^7}{y^3} + 210{x^6}{y^4} + 252{x^5}{y^5} + 210{x^4}{y^6} + 120{x^3}{y^7} + 45{x^2}{y^8} + 10x{y^9} + {y^{10}}
**Final Answer:
∴The expansion form of the given expression(x+y)10is equal to(x+y)10=x10+10x9y+45x8y2+120x7y3+210x6y4+252x5y5+210x4y6+120x3y7+45x2y8+10xy9+y10 **
Note:
We use the binomial theorem to help us expand binomials to any given power without direct multiplication. As we have seen, multiplication can be time-consuming or even not possible in some cases.
Binomial expansion is given by the formula, (a+b)n=nC0an(b)0+nC1an−1(b)1+nC2an−2(b)2+nC3an−3(b)3+.......+nCna0(b)n,
WherenC0,,nC2,nC3……..andnCnare the binomial coefficients .
According to the binomial theorem, the(r+1)thterm in the expansion(a+b)nis given by,
Tr+1=nCran−rbr, the term(r+1)this the general term and the number of terms in the expansion(a+b)nwill be equal to(n+1), WherenCris the binomial coefficient, the sum of the binomial coefficients will be2nbecause we know that,r=0∑nnCr=2n, thus the sum of all odd binomial coefficients is equal to the sum of all even binomial coefficients and each is equal to2n−1, the middle term depends upon the value ofn.nC1