Solveeit Logo

Question

Question: How do you expand \[{\left( {x + y} \right)^{10}}\] ?...

How do you expand (x+y)10{\left( {x + y} \right)^{10}} ?

Explanation

Solution

Here we will apply the Binomial Expansion to solve the given problem.
The binomial theorem (or binomial expansion) describes the algebraic expansion of power of a binomial. According to the theorem, it is possible to expand the polynomial (x+y)n{(x + y)^n}.
First we have to Put the given value in the place of n and use the formula. Then solving this with the help of combination rule and factorial n and simplifying the result we will get the solution.

Formula used: Combination rule: nCr=n!(nr)!r!^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}
Binomial expansion:
(x+y)n=nC0xn+nC1xn1y1+nC2xn2y2+......+nCn1xyn1+nCnyn{(x + y)^n}{ = ^n}{C_0}{x^n}{ + ^n}{C_1}{x^{n - 1}}{y^1}{ + ^n}{C_2}{x^{n - 2}}{y^2} + ......{ + ^n}{C_{n - 1}}x{y^{n - 1}}{ + ^n}{C_n}{y^n}
Where n0n \geqslant 0, is an integer and each nCk^n{C_k} is a positive integer known as binomial coefficient.

Complete step-by-step solution:
We need to expand (x+y)10{\left( {x + y} \right)^{10}}.
Now we know that, according to binomial theorem it is possible to expand any nonnegative power of
x+yx + y into a sum of the form
(x+y)n=nC0xn+nC1xn1y1+nC2xn2y2+......+nCn1xyn1+nCnyn{(x + y)^n}{ = ^n}{C_0}{x^n}{ + ^n}{C_1}{x^{n - 1}}{y^1}{ + ^n}{C_2}{x^{n - 2}}{y^2} + ......{ + ^n}{C_{n - 1}}x{y^{n - 1}}{ + ^n}{C_n}{y^n}, where n0n \geqslant 0, is an integer and eachnCk^n{C_k} is a positive integer known as binomial coefficient.
Now we can use the binomial expansion putting n=10n = 10 we get,
(x+y)10=10C0x10y0+10C1x101y1+...+10C9x109y9+10C10x0y10\Rightarrow {(x + y)^{10}}{ = ^{10}}{C_0}{x^{10}}{y^0}{ + ^{10}}{C_1}{x^{10 - 1}}{y^1} + ...{ + ^{10}}{C_9}{x^{10 - 9}}{y^9}{ + ^{10}}{C_{10}}{x^0}{y^{10}}
Solving we get,
(x+y)10=10C0x10+10C1x9y1+...+10C9xy9+10C10y10\Rightarrow {(x + y)^{10}}{ = ^{10}}{C_0}{x^{10}}{ + ^{10}}{C_1}{x^9}{y^1} + ...{ + ^{10}}{C_9}x{y^9}{ + ^{10}}{C_{10}}{y^{10}},
[Using,x0=1{x^0} = 1].
Again, we can use the Combination rule,nCr=n!(nr)!r!^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}, we get,(x+y)10=10!0!(100)!x10+10!1!(101)!x9y1+....+10!9!(109)!xy9+10!10!(1010)!y10 \Rightarrow {(x + y)^{10}} = \dfrac{{10!}}{{0!\left( {10 - 0} \right)!}}{x^{10}} + \dfrac{{10!}}{{1!\left( {10 - 1} \right)!}}{x^9}{y^1} + .... + \dfrac{{10!}}{{9!\left( {10 - 9} \right)!}}x{y^9} + \dfrac{{10!}}{{10!\left( {10 - 10} \right)!}}{y^{10}}
Solving we get,
(x+y)10=10!0!10!x10+10!1!9!x9y1+...+10!9!1!xy9+10!10!0!y10\Rightarrow {(x + y)^{10}} = \dfrac{{10!}}{{0!10!}}{x^{10}} + \dfrac{{10!}}{{1!9!}}{x^9}{y^1} + ... + \dfrac{{10!}}{{9!1!}}x{y^9} + \dfrac{{10!}}{{10!0!}}{y^{10}}
Let us expanding the factorial term and we get
(x+y)10=x10+10×9!1×9!x9y1+10×9×8!2×1×8!x8y2+...+10×9×8!8!×2×1x2y8+10×9!9!×1xy9+y10\Rightarrow {(x + y)^{10}} = {x^{10}} + \dfrac{{10 \times 9!}}{{1 \times 9!}}{x^9}{y^1} + \dfrac{{10 \times 9 \times 8!}}{{2 \times 1 \times 8!}}{x^8}{y^2} + ... + \dfrac{{10 \times 9 \times 8!}}{{8! \times 2 \times 1}}{x^2}{y^8} + \dfrac{{10 \times 9!}}{{9! \times 1}}x{y^9} + {y^{10}}
[Using the definition of factorial nn, n!=n(n1)(n2)(n4).......2.1n! = n(n - 1)(n - 2)(n - 4).......2.1 and 0!=10! = 1]
Simplifying we get,
(x+y)10=x10+10x9y1+10×92x8y2+...+10×92×1x2y8+10xy9+y10\Rightarrow {(x + y)^{10}} = {x^{10}} + 10{x^9}{y^1} + \dfrac{{10 \times 9}}{2}{x^8}{y^2} + ... + \dfrac{{10 \times 9}}{{2 \times 1}}{x^2}{y^8} + 10x{y^9} + {y^{10}}
Or,
(x+y)10=x10+10x9y1+(5×9)x8y2+...+(5×9)x2y8+10xy9+y10\Rightarrow {(x + y)^{10}} = {x^{10}} + 10{x^9}{y^1} + \left( {5 \times 9} \right){x^8}{y^2} + ... + \left( {5 \times 9} \right){x^2}{y^8} + 10x{y^9} + {y^{10}}
Solving we get,
(x+y)10=x10+10x9y1+45x8y2+...+45x2y8+10xy9+y10\Rightarrow {(x + y)^{10}} = {x^{10}} + 10{x^9}{y^1} + 45{x^8}{y^2} + ... + 45{x^2}{y^8} + 10x{y^9} + {y^{10}}

Hence expanding (x+y)10{\left( {x + y} \right)^{10}} we get,
(x+y)10=x10+10x9y1+45x8y2+...+45x2y8+10xy9+y10\Rightarrow {(x + y)^{10}} = {x^{10}} + 10{x^9}{y^1} + 45{x^8}{y^2} + ... + 45{x^2}{y^8} + 10x{y^9} + {y^{10}}

Note: In mathematics, a combination is a selection of items from a collection, such that the order of selection does not matter. For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
A combination is the number of ways we can combine things, when the order does not matter.
For a combination,
C(n,r)=nCr=n!(nr)!r!C\left( {n,r} \right){ = ^n}{C_r} = \dfrac{{n!}}{{(n - r)!r!}}
Where, factorial n is denoted by n!n! and defined by
n!=n(n1)(n2)(n4).......2.1n! = n(n - 1)(n - 2)(n - 4).......2.1