Solveeit Logo

Question

Question: How do you expand \({{\left(x-5 \right)}^{6}}\) using Pascal's triangle?...

How do you expand (x5)6{{\left(x-5 \right)}^{6}} using Pascal's triangle?

Explanation

Solution

To expand these types of expressions (x5)6{{\left(x-5 \right)}^{6}}mostly we use binomial expansion and Pascal's triangle formula. By using these two formulas we can easily expand. The above given equation (x5)6{{\left(x-5 \right)}^{6}} is in the form of (a+b)n{{\left (a+b \right)}^{n}}, where let aa is equals to xx and bb is equals to (5)\left (-5 \right) and nn is equals to the power of the expression which is 66. In mathematics, the binomial expansion describes the algebraic expansion of powers of a binomial. The expression of the binomial expansion is: (a+b)n=nc0anb0+nc1an1b1+.................+ncna0bn{{\left( a+b \right)}^{n}}{{=}^{n}}{{c}_{0}}{{a}^{n}}{{b}^{0}}{{+}^{n}}{{c}_{1}}{{a}^{n-1}}{{b}^{1}}+.................{{+}^{n}}{{c}_{n}}{{a}^{0}}{{b}^{n}} , where nc0,nc1,..........,ncn^{n}{{c}_{0}}{{,}^{n}}{{c}_{1,}}..........{{,}^{n}}{{c}_{n}} are the combinations. the general formula of combinations is: Cn,k=n!K!(nk)!{{ C} _ {n, k}} =\dfrac {n!}{K! \left (n-k \right)!}, where nn is the population and kk are the picks. By using the combination formula we can rewrite the binomial expansion as: (a+b)n=an+nan1b+n(n1)2!an2b2+....................+bn\Rightarrow {{\left (a+b \right)}^{n}}={{a}^{n}}+n{{a}^{n-1}}b+\dfrac{n\left (n-1 \right)}{2!}{{a} ^{n-2}}{{b}^{2}}+....................+{{b}^{n}} .

Complete step by step solution:
Now expanding the given expression (x5)6{{\left(x-5 \right)}^{6}}by using the binomial expansion which is
(a+b)n=an+nan1b+n(n1)2!an2b2+....................+bn\Rightarrow {{\left (a+b \right)}^{n}}={{a}^{n}}+n{{a}^{n-1}}b+\dfrac{n\left (n-1 \right)}{2!}{{a} ^{n-2}}{{b}^{2}}+....................+{{b}^{n}} then, we get

& \Rightarrow {{\left(x-5 \right)}^{6}}={{x}^{6}}-6{{x}^{5}}\left (5 \right)+\dfrac{30{{x}^{4}}{{\left (-5 \right)}^{2}}}{2!}+\dfrac {120{{x} ^ {3}} {{\left (-5 \right)}^{3}}}{3!}+\dfrac {360{{x} ^ {2}} {{\left (-5 \right)}^{4}}}{4!}+\dfrac {720x {{\left (-5 \right)}^{5}}+}{5!}\dfrac{720{{\left (-5 \right)}^{6}}}{\left (6! \right)} \\\ & \Rightarrow {{\left(x-5 \right)}^{6}}={{x}^{6}}-30{{x}^{5}}+375{{x}^{4}}-2500{{x}^{3}}+9375{{x}^{2}}-18750x+15625 \\\ \end{aligned}$$ Hence by using the binomial expansion we get the expanded form of ${{\left(x-5 \right)}^{6}}$is$${{\left (x-5 \right)}^{6}}={{x}^{6}}-30{{x}^{5}}+375{{x}^{4}}-2500{{x}^{3}}+9375{{x}^{2}}-18750x+15625$$. Now we will use Pascal's triangle formula to expand the given expression${{\left(x-5 \right)}^{6}}$. The Pascal's triangle is a never ending equilateral triangle of numbers which follow the rule of adding the two numbers to get the number below. The first row of Pascal's triangle is ${{\left (a+b \right)}^{0}}$. So for ${{\left(x-5 \right)}^{6}}$ we are looking for the 7th row of the Pascal's triangle for coefficients: ![](https://www.vedantu.com/question-sets/71bb099f-229f-4f62-85e5-cf2349d73c917687563041793235751.png) Now by expanding the given expression ${{\left(x-5 \right)}^{6}}$by using Pascal's triangle formula we get, $\begin {align} & \Rightarrow {{\left(x-5 \right)}^{6}}={{x}^{6}}-6\times {{x} ^ {5}}\times 5+15{{x} ^ {4}}\times 25-20{{x} ^ {3}}\times 125+15{{x} ^ {2}}\times 625-6x\times 3125+15625 \\\ & \\\ \end{aligned}$$$\Rightarrow {{\left (x-5 \right)}^{6}}={{x}^{6}}-30{{x}^{5}}+375{{x}^{4}}-2500{{x}^{3}}+9375{{x}^{2}}-18750x+15625$$ Hence we get the expanded form of ${{\left(x-5 \right)}^{6}}$is same as we solved above which is $${{\left (x-5 \right)}^{6}}={{x}^{6}}-30{{x}^{5}}+375{{x}^{4}}-2500{{x}^{3}}+9375{{x}^{2}}-18750x+15625$$ **Note:** We can go wrong in the calculation part, so use a calculator to solve these types of questions. We discussed two methods to solve these types of expression ${{\left(x-5 \right)}^{6}}$ one is binomial expansion and another is Pascal's triangle formula.