Question
Question: How do you expand \({\left( {{x^2} + 3} \right)^6}\)?...
How do you expand (x2+3)6?
Solution
In this question we have to expand the given expression by using binomial formula which is given by(a+b)n=nC0an(b)0+nC1an−1(b)1+nC2an−2(b)2+nC3an−3(b)3+.......+nCna0(b)n,
Now substituting the a and b values from the given expression in the question and using the formulanCr=r!(n−r)!n!, we will get the required result.
Complete step by step answer:
Binomial expansion is given by the formula, (a+b)n=nC0an(b)0+nC1an−1(b)1+nC2an−2(b)2+nC3an−3(b)3+.......+nCna0(b)n,
WherenC0,nC1,nC2,nC3……..andnCnare the binomial coefficients .
So, now given expression is(x2+3)6,
Now substituting a and b in the expansion, here a=x2, b=3and n=6, then we get,
⇒(x2+3)6=6C0(x2)6(3)0+6C1(x2)6−1(3)1+6C2(x2)6−2(3)2+6C3(x2)6−3(3)3+6C4(x2)6−4(3)4+6C5(x2)6−6(3)5 ⇒(x2+3)6=6C0(x2)6(3)0+6C1(x2)6−1(3)1+6C2(x2)6−2(3)2+6C3(x2)6−3(3)3+6C4(x2)6−4(3)4 +6C5(x2)6−5(3)5+6C6(x2)6−6(3)6,
We know that n combination r is given by formulanCr=r!(n−r)!n!, and now simplifying the expansion using the formula,
⇒(x2+3)6=x12(3)0+6(x2)5(3)1+2!(6−2)!6!(x2)4(9)+3!(6−3)!6!(x2)3(27) +4!(6−4)!6!(x2)2(81)+5!(6−5)!6!(x2)1(243)++6!(6−6)!6!(x2)0(729),
Now simplifying the expansion we get,
⇒(x2+3)6=x12(3)0+6(x10)(3)1+2!(4)!6!(x8)(9)+3!(3)!6!(x6)(27) +4!(2)!6!(x4)(81)+5!(1)!6!(x2)(243)+6!(0)!6!(x0)(729),
Now applying factorial formula i.e.,n!=n×(n−1)×(n−2)×........×3×2×1,we get,
⇒(x2+3)6=x12(3)0+6(x10)(3)1+(1×2)(1×2×3×4)1×2×3×4×5×6(x8)(9)+(1×2×3)(1×2×3)1×2×3×4×5×6(x6)(27)
+(1×2×3×4)(1×2)1×2×3×4×5×6(x4)(81)+(1×2×3×4×5)(1)1×2×3×4×5×6(x2)(243)+(1×2×3×4×5×6)(1)1×2×3×4×5×6(729),
Now simplifying the expansion we get,
⇒(x2+3)6=x12(3)0+6(x10)(3)1+(5×3)(x8)(9)+(4×5)(x6)(27)+(5×3)(x4)(81)
+(6)(x2)(243)+(1)(729),
Now simplifying by multiplying we get,
⇒(x2+3)6=x12+6(x10)(3)+(15)x8(9)+(20)(x6)(27)+(15)(x4)(81) +(6)(x2)(243)+(1)(729),
Now final simplification we get,
⇒(x2+3)6=x12+18x10+135x8+540x6+1215x4+1458x2+729.
So, the binomial expansion is (x2+3)6=x12+18x10+135x8+540x6+1215x4+1458x2+729.
∴ The expansion form of the given expression (x2+3)6using binomial expansion will be equal to(x2+3)6=x12+18x10+135x8+540x6+1215x4+1458x2+729.
Note: We use the binomial theorem to help us expand binomials to any given power without direct multiplication. As we have seen, multiplication can be time-consuming or even not possible in some cases.
The binomial theorem is an algebraic method of expanding a binomial expression. Essentially, it demonstrates what happens when you multiply a binomial by itself. For example, consider the expression(2x+5)9. It would take quite a long time to multiply the binomial2x+5out nine times. The binomial theorem provides a short cut, or a formula that yields the expanded form of this expression.