Solveeit Logo

Question

Question: How do you expand \({\left( {{x^2} + 3} \right)^6}\)?...

How do you expand (x2+3)6{\left( {{x^2} + 3} \right)^6}?

Explanation

Solution

In this question we have to expand the given expression by using binomial formula which is given by(a+b)n=nC0an(b)0+nC1an1(b)1+nC2an2(b)2+nC3an3(b)3+.......+nCna0(b)n{\left( {a + b} \right)^n} = {}^n{C_0}{a^n}{\left( b \right)^0} + {}^n{C_1}{a^{n - 1}}{\left( b \right)^1} + {}^n{C_2}{a^{n - 2}}{\left( b \right)^2} + {}^n{C_3}{a^{n - 3}}{\left( b \right)^3} + ....... + {}^n{C_n}{a^0}{\left( b \right)^n},
Now substituting the aa and bb values from the given expression in the question and using the formulanCr=n!r!(nr)!{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}, we will get the required result.

Complete step by step answer:
Binomial expansion is given by the formula, (a+b)n=nC0an(b)0+nC1an1(b)1+nC2an2(b)2+nC3an3(b)3+.......+nCna0(b)n{\left( {a + b} \right)^n} = {}^n{C_0}{a^n}{\left( b \right)^0} + {}^n{C_1}{a^{n - 1}}{\left( b \right)^1} + {}^n{C_2}{a^{n - 2}}{\left( b \right)^2} + {}^n{C_3}{a^{n - 3}}{\left( b \right)^3} + ....... + {}^n{C_n}{a^0}{\left( b \right)^n},
WherenC0{}^n{C_0},nC1{}^n{C_1},nC2{}^n{C_2},nC3{}^n{C_3}……..andnCn{}^n{C_n}are the binomial coefficients .
So, now given expression is(x2+3)6{\left( {{x^2} + 3} \right)^6},
Now substituting aa and bb in the expansion, here a=x2a = {x^2}, b=3b = 3and n=6n = 6, then we get,
(x2+3)6=6C0(x2)6(3)0+6C1(x2)61(3)1+6C2(x2)62(3)2+6C3(x2)63(3)3+6C4(x2)64(3)4+6C5(x2)66(3)5\Rightarrow {\left( {{x^2} + 3} \right)^6} = {}^6{C_0}{\left( {{x^2}} \right)^6}{\left( 3 \right)^0} + {}^6{C_1}{\left( {{x^2}} \right)^{6 - 1}}{\left( 3 \right)^1} + {}^6{C_2}{\left( {{x^2}} \right)^{6 - 2}}{\left( 3 \right)^2} + {}^6{C_3}{\left( {{x^2}} \right)^{6 - 3}}{\left( 3 \right)^3} + {}^6{C_4}{\left( {{x^2}} \right)^{6 - 4}}{\left( 3 \right)^4} + {}^6{C_5}{\left( {{x^2}} \right)^{6 - 6}}{\left( 3 \right)^5} (x2+3)6=6C0(x2)6(3)0+6C1(x2)61(3)1+6C2(x2)62(3)2+6C3(x2)63(3)3+6C4(x2)64(3)4 \Rightarrow {\left( {{x^2} + 3} \right)^6} = {}^6{C_0}{\left( {{x^2}} \right)^6}{\left( 3 \right)^0} + {}^6{C_1}{\left( {{x^2}} \right)^{6 - 1}}{\left( 3 \right)^1} + {}^6{C_2}{\left( {{x^2}} \right)^{6 - 2}}{\left( 3 \right)^2} + {}^6{C_3}{\left( {{x^2}} \right)^{6 - 3}}{\left( 3 \right)^3} + {}^6{C_4}{\left( {{x^2}} \right)^{6 - 4}}{\left( 3 \right)^4} +6C5(x2)65(3)5+6C6(x2)66(3)6 + {}^6{C_5}{\left( {{x^2}} \right)^{6 - 5}}{\left( 3 \right)^5} + {}^6{C_6}{\left( {{x^2}} \right)^{6 - 6}}{\left( 3 \right)^6},
We know that n combination r is given by formulanCr=n!r!(nr)!{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}, and now simplifying the expansion using the formula,
(x2+3)6=x12(3)0+6(x2)5(3)1+6!2!(62)!(x2)4(9)+6!3!(63)!(x2)3(27)\Rightarrow {\left( {{x^2} + 3} \right)^6} = {x^{12}}{\left( 3 \right)^0} + 6{\left( {{x^2}} \right)^5}{\left( 3 \right)^1} + \dfrac{{6!}}{{2!\left( {6 - 2} \right)!}}{\left( {{x^2}} \right)^4}\left( 9 \right) + \dfrac{{6!}}{{3!\left( {6 - 3} \right)!}}{\left( {{x^2}} \right)^3}\left( {27} \right) +6!4!(64)!(x2)2(81)+6!5!(65)!(x2)1(243)++6!6!(66)!(x2)0(729) + \dfrac{{6!}}{{4!\left( {6 - 4} \right)!}}{\left( {{x^2}} \right)^2}\left( {81} \right) + \dfrac{{6!}}{{5!\left( {6 - 5} \right)!}}{\left( {{x^2}} \right)^1}\left( {243} \right) + + \dfrac{{6!}}{{6!\left( {6 - 6} \right)!}}{\left( {{x^2}} \right)^0}\left( {729} \right),
Now simplifying the expansion we get,
(x2+3)6=x12(3)0+6(x10)(3)1+6!2!(4)!(x8)(9)+6!3!(3)!(x6)(27)\Rightarrow {\left( {{x^2} + 3} \right)^6} = {x^{12}}{\left( 3 \right)^0} + 6\left( {{x^{10}}} \right){\left( 3 \right)^1} + \dfrac{{6!}}{{2!\left( 4 \right)!}}\left( {{x^8}} \right)\left( 9 \right) + \dfrac{{6!}}{{3!\left( 3 \right)!}}\left( {{x^6}} \right)\left( {27} \right) +6!4!(2)!(x4)(81)+6!5!(1)!(x2)(243)+6!6!(0)!(x0)(729) + \dfrac{{6!}}{{4!\left( 2 \right)!}}\left( {{x^4}} \right)\left( {81} \right) + \dfrac{{6!}}{{5!\left( 1 \right)!}}\left( {{x^2}} \right)\left( {243} \right) + \dfrac{{6!}}{{6!\left( 0 \right)!}}\left( {{x^0}} \right)\left( {729} \right),
Now applying factorial formula i.e.,n!=n×(n1)×(n2)×........×3×2×1n! = n \times (n - 1) \times \left( {n - 2} \right) \times ........ \times 3 \times 2 \times 1,we get,
(x2+3)6=x12(3)0+6(x10)(3)1+1×2×3×4×5×6(1×2)(1×2×3×4)(x8)(9)+1×2×3×4×5×6(1×2×3)(1×2×3)(x6)(27)\Rightarrow {\left( {{x^2} + 3} \right)^6} = {x^{12}}{\left( 3 \right)^0} + 6\left( {{x^{10}}} \right){\left( 3 \right)^1} + \dfrac{{1 \times 2 \times 3 \times 4 \times 5 \times 6}}{{\left( {1 \times 2} \right)\left( {1 \times 2 \times 3 \times 4} \right)}}\left( {{x^8}} \right)\left( 9 \right) + \dfrac{{1 \times 2 \times 3 \times 4 \times 5 \times 6}}{{\left( {1 \times 2 \times 3} \right)\left( {1 \times 2 \times 3} \right)}}\left( {{x^6}} \right)\left( {27} \right)
+1×2×3×4×5×6(1×2×3×4)(1×2)(x4)(81)+1×2×3×4×5×6(1×2×3×4×5)(1)(x2)(243)+1×2×3×4×5×6(1×2×3×4×5×6)(1)(729)+ \dfrac{{1 \times 2 \times 3 \times 4 \times 5 \times 6}}{{\left( {1 \times 2 \times 3 \times 4} \right)\left( {1 \times 2} \right)}}\left( {{x^4}} \right)\left( {81} \right) + \dfrac{{1 \times 2 \times 3 \times 4 \times 5 \times 6}}{{\left( {1 \times 2 \times 3 \times 4 \times 5} \right)\left( 1 \right)}}\left( {{x^2}} \right)\left( {243} \right) + \dfrac{{1 \times 2 \times 3 \times 4 \times 5 \times 6}}{{\left( {1 \times 2 \times 3 \times 4 \times 5 \times 6} \right)\left( 1 \right)}}\left( {729} \right),
Now simplifying the expansion we get,
(x2+3)6=x12(3)0+6(x10)(3)1+(5×3)(x8)(9)+(4×5)(x6)(27)+(5×3)(x4)(81)\Rightarrow {\left( {{x^2} + 3} \right)^6} = {x^{12}}{\left( 3 \right)^0} + 6\left( {{x^{10}}} \right){\left( 3 \right)^1} + \left( {5 \times 3} \right)\left( {{x^8}} \right)\left( 9 \right) + \left( {4 \times 5} \right)\left( {{x^6}} \right)\left( {27} \right) + \left( {5 \times 3} \right)\left( {{x^4}} \right)\left( {81} \right)
+(6)(x2)(243)+(1)(729)+ \left( 6 \right)\left( {{x^2}} \right)\left( {243} \right) + \left( 1 \right)\left( {729} \right),
Now simplifying by multiplying we get,
(x2+3)6=x12+6(x10)(3)+(15)x8(9)+(20)(x6)(27)+(15)(x4)(81)\Rightarrow {\left( {{x^2} + 3} \right)^6} = {x^{12}} + 6\left( {{x^{10}}} \right)\left( 3 \right) + \left( {15} \right){x^8}\left( 9 \right) + \left( {20} \right)\left( {{x^6}} \right)\left( {27} \right) + \left( {15} \right)\left( {{x^4}} \right)\left( {81} \right) +(6)(x2)(243)+(1)(729) + \left( 6 \right)\left( {{x^2}} \right)\left( {243} \right) + \left( 1 \right)\left( {729} \right),
Now final simplification we get,
(x2+3)6=x12+18x10+135x8+540x6+1215x4+1458x2+729\Rightarrow {\left( {{x^2} + 3} \right)^6} = {x^{12}} + 18{x^{10}} + 135{x^8} + 540{x^6} + 1215{x^4} + 1458{x^2} + 729.
So, the binomial expansion is (x2+3)6=x12+18x10+135x8+540x6+1215x4+1458x2+729{\left( {{x^2} + 3} \right)^6} = {x^{12}} + 18{x^{10}} + 135{x^8} + 540{x^6} + 1215{x^4} + 1458{x^2} + 729.

\therefore The expansion form of the given expression (x2+3)6{\left( {{x^2} + 3} \right)^6}using binomial expansion will be equal to(x2+3)6=x12+18x10+135x8+540x6+1215x4+1458x2+729{\left( {{x^2} + 3} \right)^6} = {x^{12}} + 18{x^{10}} + 135{x^8} + 540{x^6} + 1215{x^4} + 1458{x^2} + 729.

Note: We use the binomial theorem to help us expand binomials to any given power without direct multiplication. As we have seen, multiplication can be time-consuming or even not possible in some cases.
The binomial theorem is an algebraic method of expanding a binomial expression. Essentially, it demonstrates what happens when you multiply a binomial by itself. For example, consider the expression(2x+5)9{\left( {2x + 5} \right)^9}. It would take quite a long time to multiply the binomial2x+52x + 5out nine times. The binomial theorem provides a short cut, or a formula that yields the expanded form of this expression.