Question
Question: How do you expand \({{\left( 3x+2y \right)}^{4}}\) ?...
How do you expand (3x+2y)4 ?
Solution
We can expand the given expression (3x+2y)4 by first taking the square of (3x+2y) and then take the square of the result of the square of (3x+2y). We will take the square of (3x+2y) by using the algebraic identity which is equal to (a+b)2=a2+2ab+b2. Then when you take the second time square of (3x+2y), you will need the algebraic identity which is equal to: (a+b+c)2=a2+b2+c2+2(ab+bc+ca).
Complete step by step answer:
The algebraic expression given in the above problem is as follows:
(3x+2y)4
We can rewrite the above expression as follows:
((3x+2y)2)2
Now, taking the square of (3x+2y) using the following algebraic identity i.e.:
(a+b)2=a2+2ab+b2
When using the above algebraic identity, substituting ′′a=3x′′ and ′′b=2y′′ in the above identity we get,
(3x+2y)2=(3x)2+2(3x)(2y)+(2y)2⇒(3x+2y)2=9x2+12xy+4y2
Now, taking square on both the sides we get,
((3x+2y)2)2=(9x2+12xy+4y2)2 ………. Eq. (1)
Applying the following algebraic identity on R.H.S of the above equation we get,
(a+b+c)2=a2+b2+c2+2(ab+bc+ca)
Substituting a=9x2,b=12xy,c=4y2 in the above equation we get,
(9x2+12xy+4y2)2=(9x2)2+(12xy)2+(4y2)2+2((9x2)(12xy)+(12xy)(4y2)+(4y2)(9x2))
Multiplying 2 with the terms written in the bracket we get,
⇒(9x2+12xy+4y2)2=81x4+144x2y2+16y4+2(108x3y+48xy3+36x2y2)⇒(9x2+12xy+4y2)2=81x4+144x2y2+16y4+216x3y+96xy3+72x2y2
Adding the coefficients of x2y2 in the R.H.S of the above equation we get,
(9x2+12xy+4y2)2=81x4+(144+72)x2y2+16y4+216x3y+96xy3⇒(9x2+12xy+4y2)2=81x4+216x2y2+16y4+216x3y+96xy3
Substituting the above value in eq. (1) we get,
((3x+2y)2)2= 81x4+216x2y2+16y4+216x3y+96xy3
Hence, the expansion of (3x+2y)4 is equal to:
81x4+216x2y2+16y4+216x3y+96xy3
Note: The alternate approach to the above problem is as follows:
We know that the binomial expansion of:
(x+y)n=nC0xny0+nC1xn−1y1+......+nCnx0yn
So, using the above expansion in expanding (3x+2y)4 we get,
(3x+2y)4=4C0(3x)4(2y)0+4C1(3x)3(2y)1+4C2(3x)2(2y)2+4C3(3x)1(2y)3+4C4(3x)0(2y)4 We know that: nCr=r!(n−r)!n! so using this expansion in the above equation we get,
(3x+2y)4=0!(4−0)!4!(3x)4(2y)0+1!(4−1)!4!(3x)3(2y)1+2!(4−2)!4!(3x)2(2y)2+3!(4−3)!4!(3x)1(2y)3+4!(4−4)!4!(3x)0(2y)4⇒(3x+2y)4=0!(4)!4!(3x)4(2y)0+1!(3)!4!(3x)3(2y)1+2!(2)!4!(3x)2(2y)2+3!(1)!4!(3x)1(2y)3+4!(0)!4!(3x)0(2y)4
We also know that the value of 0!=1 so using this relation in the above we get,
(3x+2y)4=(1)(4)!4!(3x)4(2y)0+1!(3)!4!(3x)3(2y)1+2!(2)!4!(3x)2(2y)2+3!(1)!4!(3x)1(2y)3+4!(1)4!(3x)0(2y)4⇒(3x+2y)4=(1)11(3x)4(2y)0+1!(3)!4.3!(3x)3(2y)1+2!(2)!4.3.2!(3x)2(2y)2+3!(1)!4.3!(3x)1(2y)3+4!(1)4!(3x)0(2y)4
In the above, 3!,4!,2! will be cancelled out from the numerator and the denominator in the R.H.S of the above equation we get,
(3x+2y)4=81x4+1454x3y+2.14.336x2y2+(1)424xy3+(1)116y4⇒(3x+2y)4=81x4+216x3y+216x2y2+96xy3+16y4