Solveeit Logo

Question

Question: How do you expand \({{\left( 3x+2y \right)}^{4}}\) ?...

How do you expand (3x+2y)4{{\left( 3x+2y \right)}^{4}} ?

Explanation

Solution

We can expand the given expression (3x+2y)4{{\left( 3x+2y \right)}^{4}} by first taking the square of (3x+2y)\left( 3x+2y \right) and then take the square of the result of the square of (3x+2y)\left( 3x+2y \right). We will take the square of (3x+2y)\left( 3x+2y \right) by using the algebraic identity which is equal to (a+b)2=a2+2ab+b2{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}. Then when you take the second time square of (3x+2y)\left( 3x+2y \right), you will need the algebraic identity which is equal to: (a+b+c)2=a2+b2+c2+2(ab+bc+ca){{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right).

Complete step by step answer:
The algebraic expression given in the above problem is as follows:
(3x+2y)4{{\left( 3x+2y \right)}^{4}}
We can rewrite the above expression as follows:
((3x+2y)2)2{{\left( {{\left( 3x+2y \right)}^{2}} \right)}^{2}}
Now, taking the square of (3x+2y)\left( 3x+2y \right) using the following algebraic identity i.e.:
(a+b)2=a2+2ab+b2{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}
When using the above algebraic identity, substituting a=3x''a=3x'' and b=2y''b=2y'' in the above identity we get,
(3x+2y)2=(3x)2+2(3x)(2y)+(2y)2 (3x+2y)2=9x2+12xy+4y2 \begin{aligned} & {{\left( 3x+2y \right)}^{2}}={{\left( 3x \right)}^{2}}+2\left( 3x \right)\left( 2y \right)+{{\left( 2y \right)}^{2}} \\\ & \Rightarrow {{\left( 3x+2y \right)}^{2}}=9{{x}^{2}}+12xy+4{{y}^{2}} \\\ \end{aligned}
Now, taking square on both the sides we get,
((3x+2y)2)2=(9x2+12xy+4y2)2{{\left( {{\left( 3x+2y \right)}^{2}} \right)}^{2}}={{\left( 9{{x}^{2}}+12xy+4{{y}^{2}} \right)}^{2}} ………. Eq. (1)
Applying the following algebraic identity on R.H.S of the above equation we get,
(a+b+c)2=a2+b2+c2+2(ab+bc+ca){{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right)
Substituting a=9x2,b=12xy,c=4y2a=9{{x}^{2}},b=12xy,c=4{{y}^{2}} in the above equation we get,
(9x2+12xy+4y2)2=(9x2)2+(12xy)2+(4y2)2+2((9x2)(12xy)+(12xy)(4y2)+(4y2)(9x2)){{\left( 9{{x}^{2}}+12xy+4{{y}^{2}} \right)}^{2}}={{\left( 9{{x}^{2}} \right)}^{2}}+{{\left( 12xy \right)}^{2}}+{{\left( 4{{y}^{2}} \right)}^{2}}+2\left( \left( 9{{x}^{2}} \right)\left( 12xy \right)+\left( 12xy \right)\left( 4{{y}^{2}} \right)+\left( 4{{y}^{2}} \right)\left( 9{{x}^{2}} \right) \right)
Multiplying 2 with the terms written in the bracket we get,
(9x2+12xy+4y2)2=81x4+144x2y2+16y4+2(108x3y+48xy3+36x2y2) (9x2+12xy+4y2)2=81x4+144x2y2+16y4+216x3y+96xy3+72x2y2 \begin{aligned} & \Rightarrow {{\left( 9{{x}^{2}}+12xy+4{{y}^{2}} \right)}^{2}}=81{{x}^{4}}+144{{x}^{2}}{{y}^{2}}+16{{y}^{4}}+2\left( 108{{x}^{3}}y+48x{{y}^{3}}+36{{x}^{2}}{{y}^{2}} \right) \\\ & \Rightarrow {{\left( 9{{x}^{2}}+12xy+4{{y}^{2}} \right)}^{2}}=81{{x}^{4}}+144{{x}^{2}}{{y}^{2}}+16{{y}^{4}}+216{{x}^{3}}y+96x{{y}^{3}}+72{{x}^{2}}{{y}^{2}} \\\ \end{aligned}
Adding the coefficients of x2y2{{x}^{2}}{{y}^{2}} in the R.H.S of the above equation we get,
(9x2+12xy+4y2)2=81x4+(144+72)x2y2+16y4+216x3y+96xy3 (9x2+12xy+4y2)2=81x4+216x2y2+16y4+216x3y+96xy3 \begin{aligned} & {{\left( 9{{x}^{2}}+12xy+4{{y}^{2}} \right)}^{2}}=81{{x}^{4}}+\left( 144+72 \right){{x}^{2}}{{y}^{2}}+16{{y}^{4}}+216{{x}^{3}}y+96x{{y}^{3}} \\\ & \Rightarrow {{\left( 9{{x}^{2}}+12xy+4{{y}^{2}} \right)}^{2}}=81{{x}^{4}}+216{{x}^{2}}{{y}^{2}}+16{{y}^{4}}+216{{x}^{3}}y+96x{{y}^{3}} \\\ \end{aligned}
Substituting the above value in eq. (1) we get,
((3x+2y)2)2={{\left( {{\left( 3x+2y \right)}^{2}} \right)}^{2}}= 81x4+216x2y2+16y4+216x3y+96xy381{{x}^{4}}+216{{x}^{2}}{{y}^{2}}+16{{y}^{4}}+216{{x}^{3}}y+96x{{y}^{3}}

Hence, the expansion of (3x+2y)4{{\left( 3x+2y \right)}^{4}} is equal to:
81x4+216x2y2+16y4+216x3y+96xy381{{x}^{4}}+216{{x}^{2}}{{y}^{2}}+16{{y}^{4}}+216{{x}^{3}}y+96x{{y}^{3}}

Note: The alternate approach to the above problem is as follows:
We know that the binomial expansion of:
(x+y)n=nC0xny0+nC1xn1y1+......+nCnx0yn{{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+......+{}^{n}{{C}_{n}}{{x}^{0}}{{y}^{n}}
So, using the above expansion in expanding (3x+2y)4{{\left( 3x+2y \right)}^{4}} we get,
(3x+2y)4=4C0(3x)4(2y)0+4C1(3x)3(2y)1+4C2(3x)2(2y)2+4C3(3x)1(2y)3+4C4(3x)0(2y)4{{\left( 3x+2y \right)}^{4}}={}^{4}{{C}_{0}}{{\left( 3x \right)}^{4}}{{\left( 2y \right)}^{0}}+{}^{4}{{C}_{1}}{{\left( 3x \right)}^{3}}{{\left( 2y \right)}^{1}}+{}^{4}{{C}_{2}}{{\left( 3x \right)}^{2}}{{\left( 2y \right)}^{2}}+{}^{4}{{C}_{3}}{{\left( 3x \right)}^{1}}{{\left( 2y \right)}^{3}}+{}^{4}{{C}_{4}}{{\left( 3x \right)}^{0}}{{\left( 2y \right)}^{4}} We know that: nCr=n!r!(nr)!{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!} so using this expansion in the above equation we get,
(3x+2y)4=4!0!(40)!(3x)4(2y)0+4!1!(41)!(3x)3(2y)1+4!2!(42)!(3x)2(2y)2+4!3!(43)!(3x)1(2y)3+4!4!(44)!(3x)0(2y)4 (3x+2y)4=4!0!(4)!(3x)4(2y)0+4!1!(3)!(3x)3(2y)1+4!2!(2)!(3x)2(2y)2+4!3!(1)!(3x)1(2y)3+4!4!(0)!(3x)0(2y)4 \begin{aligned} & {{\left( 3x+2y \right)}^{4}}=\dfrac{4!}{0!\left( 4-0 \right)!}{{\left( 3x \right)}^{4}}{{\left( 2y \right)}^{0}}+\dfrac{4!}{1!\left( 4-1 \right)!}{{\left( 3x \right)}^{3}}{{\left( 2y \right)}^{1}}+\dfrac{4!}{2!\left( 4-2 \right)!}{{\left( 3x \right)}^{2}}{{\left( 2y \right)}^{2}}+\dfrac{4!}{3!\left( 4-3 \right)!}{{\left( 3x \right)}^{1}}{{\left( 2y \right)}^{3}}+\dfrac{4!}{4!\left( 4-4 \right)!}{{\left( 3x \right)}^{0}}{{\left( 2y \right)}^{4}} \\\ & \Rightarrow {{\left( 3x+2y \right)}^{4}}=\dfrac{4!}{0!\left( 4 \right)!}{{\left( 3x \right)}^{4}}{{\left( 2y \right)}^{0}}+\dfrac{4!}{1!\left( 3 \right)!}{{\left( 3x \right)}^{3}}{{\left( 2y \right)}^{1}}+\dfrac{4!}{2!\left( 2 \right)!}{{\left( 3x \right)}^{2}}{{\left( 2y \right)}^{2}}+\dfrac{4!}{3!\left( 1 \right)!}{{\left( 3x \right)}^{1}}{{\left( 2y \right)}^{3}}+\dfrac{4!}{4!\left( 0 \right)!}{{\left( 3x \right)}^{0}}{{\left( 2y \right)}^{4}} \\\ \end{aligned}
We also know that the value of 0!=10!=1 so using this relation in the above we get,
(3x+2y)4=4!(1)(4)!(3x)4(2y)0+4!1!(3)!(3x)3(2y)1+4!2!(2)!(3x)2(2y)2+4!3!(1)!(3x)1(2y)3+4!4!(1)(3x)0(2y)4 (3x+2y)4=1(1)1(3x)4(2y)0+4.3!1!(3)!(3x)3(2y)1+4.3.2!2!(2)!(3x)2(2y)2+4.3!3!(1)!(3x)1(2y)3+4!4!(1)(3x)0(2y)4 \begin{aligned} & {{\left( 3x+2y \right)}^{4}}=\dfrac{4!}{\left( 1 \right)\left( 4 \right)!}{{\left( 3x \right)}^{4}}{{\left( 2y \right)}^{0}}+\dfrac{4!}{1!\left( 3 \right)!}{{\left( 3x \right)}^{3}}{{\left( 2y \right)}^{1}}+\dfrac{4!}{2!\left( 2 \right)!}{{\left( 3x \right)}^{2}}{{\left( 2y \right)}^{2}}+\dfrac{4!}{3!\left( 1 \right)!}{{\left( 3x \right)}^{1}}{{\left( 2y \right)}^{3}}+\dfrac{4!}{4!\left( 1 \right)}{{\left( 3x \right)}^{0}}{{\left( 2y \right)}^{4}} \\\ & \Rightarrow {{\left( 3x+2y \right)}^{4}}=\dfrac{1}{\left( 1 \right)1}{{\left( 3x \right)}^{4}}{{\left( 2y \right)}^{0}}+\dfrac{4.3!}{1!\left( 3 \right)!}{{\left( 3x \right)}^{3}}{{\left( 2y \right)}^{1}}+\dfrac{4.3.2!}{2!\left( 2 \right)!}{{\left( 3x \right)}^{2}}{{\left( 2y \right)}^{2}}+\dfrac{4.3!}{3!\left( 1 \right)!}{{\left( 3x \right)}^{1}}{{\left( 2y \right)}^{3}}+\dfrac{4!}{4!\left( 1 \right)}{{\left( 3x \right)}^{0}}{{\left( 2y \right)}^{4}} \\\ \end{aligned}
In the above, 3!,4!,2!3!,4!,2! will be cancelled out from the numerator and the denominator in the R.H.S of the above equation we get,
(3x+2y)4=81x4+4154x3y+4.32.136x2y2+4(1)24xy3+1(1)16y4 (3x+2y)4=81x4+216x3y+216x2y2+96xy3+16y4 \begin{aligned} & {{\left( 3x+2y \right)}^{4}}=81{{x}^{4}}+\dfrac{4}{1}54{{x}^{3}}y+\dfrac{4.3}{2.1}36{{x}^{2}}{{y}^{2}}+\dfrac{4}{\left( 1 \right)}24x{{y}^{3}}+\dfrac{1}{\left( 1 \right)}16{{y}^{4}} \\\ & \Rightarrow {{\left( 3x+2y \right)}^{4}}=81{{x}^{4}}+216{{x}^{3}}y+216{{x}^{2}}{{y}^{2}}+96x{{y}^{3}}+16{{y}^{4}} \\\ \end{aligned}