Solveeit Logo

Question

Question: How do you expand \({{\left( 2{{x}^{3}}+1 \right)}^{5}}\)?...

How do you expand (2x3+1)5{{\left( 2{{x}^{3}}+1 \right)}^{5}}?

Explanation

Solution

Binomial theorem is a method used to expand a binomial term that is raise to some power of positive integer. According to binomial theorem, the nth power of the sum of two numbers (say a and b) can be expressed (expanded) as the sum or series of (n+1) terms, provided that ‘n’ is a positive integer.

Formula used: (x+y)n=i=0nnCixniyi{{(x+y)}^{n}}=\sum\limits_{i=0}^{n}{{}^{n}{{C}_{i}}{{x}^{n-i}}{{y}^{i}}},
where x and y are real numbers and n is a positive integer (a natural number).
nCi=n!i!(ni)!{}^{n}{{C}_{i}}=\dfrac{n!}{i!(n-i)!}

Complete step-by-step solution:
Let us first understand what is the binomial theorem.
Binomial theorem is a method used to expand a binomial term that is raised to some power of positive integer.
According to binomial theorem, the nth power of the sum of two numbers (say a and b) can be expressed (expanded) as the sum or series of (n+1) terms, provided that ‘n’ is a positive integer.
Suppose we have an expression (x+y)n{{(x+y)}^{n}}, where x and y are real numbers and n is a positive integer (a natural number).
Then, the binomial expansion of the above expression is given as (x+y)n=i=0nnCixniyi{{(x+y)}^{n}}=\sum\limits_{i=0}^{n}{{}^{n}{{C}_{i}}{{x}^{n-i}}{{y}^{i}}}.
Here, i is a natural number taking values from 0 to n.
When we expand the summation we get that (x+y)n=nC0xn0y0+nC1xn1y1+nC2xn2y2+.......+nCn1xn(n1)yn1+nCnxnnyn{{(x+y)}^{n}}={}^{n}{{C}_{0}}{{x}^{n-0}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{y}^{2}}+.......+{}^{n}{{C}_{n-1}}{{x}^{n-(n-1)}}{{y}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n-n}}{{y}^{n}}.
In the given question, n=5n=5,
Therefore, the given expression can expanded, with the help of binomial theorem as
(2x3+1)5=5C0(2x3)50(1)0+5C1(2x3)51(1)1+5C2(2x3)52(1)2+5C3(2x3)53(1)3+5C4(2x3)54(1)4+5C5(2x3)55(1)5\Rightarrow {{(2{{x}^{3}}+1)}^{5}}={}^{5}{{C}_{0}}{{(2{{x}^{3}})}^{5-0}}{{(1)}^{0}}+{}^{5}{{C}_{1}}{{(2{{x}^{3}})}^{5-1}}{{(1)}^{1}}+{}^{5}{{C}_{2}}{{(2{{x}^{3}})}^{5-2}}{{(1)}^{2}}+{}^{5}{{C}_{3}}{{(2{{x}^{3}})}^{5-3}}{{(1)}^{3}}+{}^{5}{{C}_{4}}{{(2{{x}^{3}})}^{5-4}}{{(1)}^{4}}+{}^{5}{{C}_{5}}{{(2{{x}^{3}})}^{5-5}}{{(1)}^{5}}
This equation can be further simplified to
(2x3+1)5=5C0(2x3)5+5C1(2x3)4+5C2(2x3)3+5C3(2x3)2+5C4(2x3)1+5C5(2x3)0\Rightarrow {{(2{{x}^{3}}+1)}^{5}}={}^{5}{{C}_{0}}{{(2{{x}^{3}})}^{5}}+{}^{5}{{C}_{1}}{{(2{{x}^{3}})}^{4}}+{}^{5}{{C}_{2}}{{(2{{x}^{3}})}^{3}}+{}^{5}{{C}_{3}}{{(2{{x}^{3}})}^{2}}+{}^{5}{{C}_{4}}{{(2{{x}^{3}})}^{1}}+{}^{5}{{C}_{5}}{{(2{{x}^{3}})}^{0}}
(2x3+1)5=5C0(32x15)+5C1(16x12)+5C2(8x9)+5C3(4x6)+5C4(2x3)+5C5(1)\Rightarrow {{(2{{x}^{3}}+1)}^{5}}={}^{5}{{C}_{0}}(32{{x}^{15}})+{}^{5}{{C}_{1}}(16{{x}^{12}})+{}^{5}{{C}_{2}}(8{{x}^{9}})+{}^{5}{{C}_{3}}(4{{x}^{6}})+{}^{5}{{C}_{4}}(2{{x}^{3}})+{}^{5}{{C}_{5}}(1) ….. (i)
Now, we shall use the formula nCi=n!i!(ni)!{}^{n}{{C}_{i}}=\dfrac{n!}{i!(n-i)!}
Therefore, equation (i) can be simplified to
(2x3+1)5=5!0!(50)!(32x15)5!1!(51)!(16x12)+5!2!(52)!(8x9)5!3!(53)!(4x6)+5!4!(54)!(2x3)+5!5!(55)!\Rightarrow {{(2{{x}^{3}}+1)}^{5}}=\dfrac{5!}{0!(5-0)!}(32{{x}^{15}})-\dfrac{5!}{1!(5-1)!}(16{{x}^{12}})+\dfrac{5!}{2!(5-2)!}(8{{x}^{9}})-\dfrac{5!}{3!(5-3)!}(4{{x}^{6}})+\dfrac{5!}{4!(5-4)!}(2{{x}^{3}})+\dfrac{5!}{5!(5-5)!}
With this, we get that
(2x3+1)5=5!5!(32x15)+5!1!(4)!(16x12)+5!2!(3)!(8x9)+5!3!(2)!(4x6)+5!4!(1)!(2x3)+5!5!(0)!\Rightarrow{{(2{{x}^{3}}+1)}^{5}}=\dfrac{5!}{5!}(32{{x}^{15}})+\dfrac{5!}{1!(4)!}(16{{x}^{12}})+\dfrac{5!}{2!(3)!}(8{{x}^{9}})+\dfrac{5!}{3!(2)!}(4{{x}^{6}})+\dfrac{5!}{4!(1)!}(2{{x}^{3}})+\dfrac{5!}{5!(0)!}
(2x3+1)5=32x15(5)(16x12)+(5×42)(8x9)+(5×4×33×2)(4x6)+(5)(2x3)+1\Rightarrow {{(2{{x}^{3}}+1)}^{5}}=32{{x}^{15}}-(5)(16{{x}^{12}})+\left( \dfrac{5\times 4}{2} \right)(8{{x}^{9}})+\left( \dfrac{5\times 4\times 3}{3\times 2} \right)(4{{x}^{6}})+(5)(2{{x}^{3}})+1
Finally,
(2x3+1)5=32x15+80x12)+80x9+40x6+10x3)+1\Rightarrow {{(2{{x}^{3}}+1)}^{5}}=32{{x}^{15}}+80{{x}^{12}})+80{{x}^{9}}+40{{x}^{6}}+10{{x}^{3}})+1
Hence, we found the expansion of the given expression with the help of binomial theorem.

Note: Note that when we expand an expression with the help of binomial theorem, the series consists of (n+1) terms. If you do not use the formula of combination nCi{}^{n}{{C}_{i}}, then you can make use of Pascal's triangle and select the row that has (n+1) elements (numbers).