Solveeit Logo

Question

Question: How do you evaluate the limit of \( \lim \dfrac{{{x^2} - 3x}}{{{x^2} + 2x - 15}} \) as \( x \to 3 \)...

How do you evaluate the limit of limx23xx2+2x15\lim \dfrac{{{x^2} - 3x}}{{{x^2} + 2x - 15}} as x3x \to 3 ?

Explanation

Solution

Hint : In order to evaluate the limit of limx23xx2+2x15\lim \dfrac{{{x^2} - 3x}}{{{x^2} + 2x - 15}} as x3x \to 3 put x3x \to 3 in the equation and check whether it is in the form of indeterminate form or not i.e 00,\dfrac{0}{0},\dfrac{\infty }{\infty } ,etc. If yes then reduce the equation to its simplest form and when it reaches the stage where no more simplification can be then just apply x3x \to 3 as value and our limit is obtained.

Complete step by step solution:
We are given with the equation limx23xx2+2x15\lim \dfrac{{{x^2} - 3x}}{{{x^2} + 2x - 15}} as x3x \to 3 which be written as limx3x23xx2+2x15\mathop {\lim }\limits_{x \to 3} \dfrac{{{x^2} - 3x}}{{{x^2} + 2x - 15}} .
To check whether it is in indeterminate form or not just x3x \to 3 in limx3x23xx2+2x15\mathop {\lim }\limits_{x \to 3} \dfrac{{{x^2} - 3x}}{{{x^2} + 2x - 15}} and we get:
limx3x23xx2+2x15=limx3323×332+2×315=999+615=00\mathop {\lim }\limits_{x \to 3} \dfrac{{{x^2} - 3x}}{{{x^2} + 2x - 15}} = \mathop {\lim }\limits_{x \to 3} \dfrac{{{3^2} - 3 \times 3}}{{{3^2} + 2 \times 3 - 15}} = \dfrac{{9 - 9}}{{9 + 6 - 15}} = \dfrac{0}{0}
And the result obtained is in the indeterminate form so simplify it to the lowest form:
For simplifying take xx common from numerator and simplify the denominator using mid term factorization and we get:
limx3x23xx2+2x15 =limx3x(x3)x2+5x3x15 =limx3x(x3)x(x+5)3(x+5) limx3x(x3)(x3)(x+5)   \mathop {\lim }\limits_{x \to 3} \dfrac{{{x^2} - 3x}}{{{x^2} + 2x - 15}} \\\ = \mathop {\lim }\limits_{x \to 3} \dfrac{{x\left( {x - 3} \right)}}{{{x^2} + 5x - 3x - 15}} \\\ = \mathop {\lim }\limits_{x \to 3} \dfrac{{x\left( {x - 3} \right)}}{{x\left( {x + 5} \right) - 3(x + 5)}} \\\ \mathop {\lim }\limits_{x \to 3} \dfrac{{x\left( {x - 3} \right)}}{{\left( {x - 3} \right)\left( {x + 5} \right)}} \;
We can cancel the same terms from numerator and denominator and we get:
limx3x(x3)(x3)(x+5) =limx3x(x+5)  \mathop {\lim }\limits_{x \to 3} \dfrac{{x\left( {x - 3} \right)}}{{\left( {x - 3} \right)\left( {x + 5} \right)}} \\\ = \mathop {\lim }\limits_{x \to 3} \dfrac{x}{{\left( {x + 5} \right)}} \\\
Since, we can see that it cannot be further simplified so just put the value of x3x \to 3 , then we get:

limx3x(x+5) =limx3xlimx3(x+5) =33+5=38   \mathop {\lim }\limits_{x \to 3} \dfrac{x}{{\left( {x + 5} \right)}} \\\ = \dfrac{{\mathop {\lim }\limits_{x \to 3} x}}{{\mathop {\lim }\limits_{x \to 3} \left( {x + 5} \right)}} \\\ = \dfrac{3}{{3 + 5}} = \dfrac{3}{8} \;

Therefore, the limit of limx23xx2+2x15\lim \dfrac{{{x^2} - 3x}}{{{x^2} + 2x - 15}} as x3x \to 3 is 38\dfrac{3}{8} .
So, the correct answer is “ 38\dfrac{3}{8} ”.

Note : We are given the Quadratic equation in the middle so, we have solved the denominator using mid-term factorization which is splitting up the middle and then taking common and then cancelling the common values.
But, since it was a Quadratic equation so, we can solve that using Quadratic formula also, which would also give the same value.