Solveeit Logo

Question

Question: How do you evaluate the limit \(\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x}\) as \(x \to 0\)?...

How do you evaluate the limit sin(2x)2x2+x\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} as x0x \to 0?

Explanation

Solution

We will directly convert the function 2x2+x2{{x}^{2}}+x into simpler form. Also, it is important to multiply the function sin(2x)2x2+x\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} by 2x2x\dfrac{2x}{2x}. This is going to be helpful here. We will use the formula limx0sin(x)x=1\displaystyle \lim_{x \to 0}\dfrac{\sin \left( x \right)}{x}=1 to solve this question further. After these processes we will substitute the value of x as 0 to get the desired answer.

Complete step-by-step answer:
In this question we need to solve the limit for the function sin(2x)2x2+x\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x}. The limit chosen here is x0x \to 0. Before solving it we will try to figure out the concept of limit in brief. A limit is simply the closeness of the given function to the given limit. Therefore, we need to find the limit of the function sin(2x)2x2+x\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} as x comes closer to the point 0.
To solve this question we will multiply the function sin(2x)2x2+x\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} by 2x2x\dfrac{2x}{2x}. Therefore, we get
limx0(sin(2x)2x2+x)=limx0(2x2x×sin(2x)2x2+x)\displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\displaystyle \lim_{x \to 0}\left( \dfrac{2x}{2x}\times \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right).
Now, we will change the expression into division form shown below.

& \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\displaystyle \lim_{x \to 0}\left( \dfrac{\dfrac{\sin \left( 2x \right)}{2x}}{\dfrac{2{{x}^{2}}+x}{2x}} \right) \\\ & \Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{\displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2x} \right)}{\displaystyle \lim_{x \to 0}\left( \dfrac{2{{x}^{2}}+x}{2x} \right)} \\\ \end{aligned}$$ Since, $$\displaystyle \lim_{x \to 0}\dfrac{\sin \left( x \right)}{x}=1$$ therefore, we can write $$\dfrac{\displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2x} \right)}{\displaystyle \lim_{x \to 0}\left( \dfrac{2{{x}^{2}}+x}{2x} \right)}=\dfrac{1}{\displaystyle \lim_{x \to 0}\left( \dfrac{2{{x}^{2}}+x}{2x} \right)}$$. $$\Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{1}{\displaystyle \lim_{x \to 0}\left( \dfrac{2{{x}^{2}}+x}{2x} \right)}$$ To solve this question further we need to convert $2{{x}^{2}}+x$ into simpler form by the process of factorization. Therefore, we get $2{{x}^{2}}+x=x\left( 2x+1 \right)$. Thus, $$\begin{aligned} & \Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{1}{\displaystyle \lim_{x \to 0}\left( \dfrac{x\left( 2x+1 \right)}{2x} \right)} \\\ & \Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{1}{\dfrac{\left( 2\left( 0 \right)+1 \right)}{2}} \\\ & \Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{1}{\dfrac{1}{2}}=2 \\\ \end{aligned}$$ Hence, the correct limit of the function given to us is 2. **Note:** We have used the term $\dfrac{2x}{2x}$ and multiplied it by the function $\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x}$. We have done this, so as to get the term $$\displaystyle \lim_{x \to 0}\dfrac{\sin \left( 2x \right)}{2x}$$. Then, it will be easier for us to use the formula $$\displaystyle \lim_{x \to 0}\dfrac{\sin \left( x \right)}{x}=1$$ to solve this question further. Then, we will substitute the value of x = 0 and get the limit of the function $\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x}$. We cannot substitute the value of x as 0 directly. Otherwise, it will lead to no answer. Since, $\displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{\sin \left( 2\left( 0 \right) \right)}{2{{\left( 0 \right)}^{2}}+0}=\dfrac{\sin \left( 0 \right)}{2{{\left( 0 \right)}^{2}}+0}=\dfrac{\sin 0}{0}$ which is undefined. So, to restrict this problem we need to simplify the function first and then substitute the value x as 0.