Solveeit Logo

Question

Question: How do you evaluate the integral \(\sin \left( {{x}^{2}}+{{y}^{2}} \right)dr\) where r is the region...

How do you evaluate the integral sin(x2+y2)dr\sin \left( {{x}^{2}}+{{y}^{2}} \right)dr where r is the region 9x2+y2649\le {{x}^{2}}+{{y}^{2}}\le 64in the polar form?

Explanation

Solution

In 2 dimensional we convert into polar coordinate as (r,θ)\left( r,\theta \right) where r is the distance from origin to the point (x,y) ,θ\theta is the angle between positive x axis and line joining origin and the point (x,y) . So the value of r is x2+y2\sqrt{{{x}^{2}}+{{y}^{2}}} . First we will convert the equation we have to integrate into polar form and then we can write dxdydxdy as rdrdθrdrd\theta and change the limits

Complete step by step answer:
We have to integrate sin(x2+y2)\sin \left( {{x}^{2}}+{{y}^{2}} \right) in the region 9x2+y2649\le {{x}^{2}}+{{y}^{2}}\le 64
We can write sin(x2+y2)dxdy\int{\sin \left( {{x}^{2}}+{{y}^{2}} \right)}dxdy in the region 9x2+y2649\le {{x}^{2}}+{{y}^{2}}\le 64
Drawing the region in graph

We can see that all quadrants have same area and all are symmetric so we can compute the integration for first quadrant and multiply it by 4
If we convert the region in parametric form then it would be rdrdθrdrd\theta where r is from 3 to 8 and θ\theta is from 0 to π2\dfrac{\pi }{2}
We can write x2+y2=r2{{x}^{2}}+{{y}^{2}}={{r}^{2}}
So sin(x2+y2)dxdy\int{\sin \left( {{x}^{2}}+{{y}^{2}} \right)}dxdy in the region 9x2+y2649\le {{x}^{2}}+{{y}^{2}}\le 64 = 4×θ=0θ=π2r=3r=8sinr2rdrdθ4\times \int\limits_{\theta =0}^{\theta =\dfrac{\pi }{2}}{\int\limits_{r=3}^{r=8}{\sin {{r}^{2}}rdrd\theta }}
First we will integrate with respect to r and then with respect to θ\theta
We can integrate sinr2rdr\sin {{r}^{2}}rdr by taking r2{{r}^{2}} as t so the value of rdrrdr will be equal to dt2\dfrac{dt}{2}
So we can write sinr2rdr=12sintdt\int{\sin {{r}^{2}}rdr=\int{\dfrac{1}{2}\sin t}dt}
The value of 12sintdt\int{\dfrac{1}{2}\sin tdt} is equal to 12cost-\dfrac{1}{2}\cos t , replacing t with r2{{r}^{2}} we get 12cosr2-\dfrac{1}{2}\cos {{r}^{2}}
So the value of r=3r=8sinr2rdr\int\limits_{r=3}^{r=8}{\sin {{r}^{2}}rdr} is equal to 12[cos(82)cos(32)]-\dfrac{1}{2}\left[ \cos \left( {{8}^{2}} \right)-\cos \left( {{3}^{2}} \right) \right] = 12[cos(32)cos(82)]\dfrac{1}{2}\left[ \cos \left( {{3}^{2}} \right)-\cos \left( {{8}^{2}} \right) \right]
We can write 4×θ=0θ=π2r=3r=8sinr2drdθ4\times \int\limits_{\theta =0}^{\theta =\dfrac{\pi }{2}}{\int\limits_{r=3}^{r=8}{\sin {{r}^{2}}drd\theta }} as 4×θ=0θ=π212[cos(32)cos(82)]dθ4\times \int\limits_{\theta =0}^{\theta =\dfrac{\pi }{2}}{\dfrac{1}{2}\left[ \cos \left( {{3}^{2}} \right)-\cos \left( {{8}^{2}} \right) \right]d\theta }
4×θ=0θ=π212[cos(32)cos(82)]dθ=2[cos(32)cos(82)]θ=0θ=π2dθ\Rightarrow 4\times \int\limits_{\theta =0}^{\theta =\dfrac{\pi }{2}}{\dfrac{1}{2}\left[ \cos \left( {{3}^{2}} \right)-\cos \left( {{8}^{2}} \right) \right]d\theta }=2\left[ \cos \left( {{3}^{2}} \right)-\cos \left( {{8}^{2}} \right) \right]\int\limits_{\theta =0}^{\theta =\dfrac{\pi }{2}}{d\theta }
4×θ=0θ=π212[cos(32)cos(82)]dθ=2×π2[cos(32)cos(82)]=π[cos(32)cos(82)]\Rightarrow 4\times \int\limits_{\theta =0}^{\theta =\dfrac{\pi }{2}}{\dfrac{1}{2}\left[ \cos \left( {{3}^{2}} \right)-\cos \left( {{8}^{2}} \right) \right]d\theta }=2\times \dfrac{\pi }{2}\left[ \cos \left( {{3}^{2}} \right)-\cos \left( {{8}^{2}} \right) \right]=\pi \left[ \cos \left( {{3}^{2}} \right)-\cos \left( {{8}^{2}} \right) \right]
π[cos(32)cos(82)]\pi \left[ \cos \left( {{3}^{2}} \right)-\cos \left( {{8}^{2}} \right) \right]=π[cos(9)cos(64)]\pi \left[ \cos \left( 9 \right)-\cos \left( 64 \right) \right]
So the value of integral sin(x2+y2)dr\sin \left( {{x}^{2}}+{{y}^{2}} \right)dr where r is the region 9x2+y2649\le {{x}^{2}}+{{y}^{2}}\le 64 is equal to π[cos(9)cos(64)]\pi \left[ \cos \left( 9 \right)-\cos \left( 64 \right) \right]

Note:
In this type of problem we need set the limit of r and θ\theta very carefully, it is given that 9x2+y2649\le {{x}^{2}}+{{y}^{2}}\le 64 and x2+y2=r2{{x}^{2}}+{{y}^{2}}={{r}^{2}} so 9r2649\le {{r}^{2}}\le 64 so the limit of r is from 3 to 8. The limit of θ\theta is from π2\dfrac{\pi }{2} as we integrate in the first quadrant. Converting into polar form is very important process write x as rsinθr\sin \theta and y as rsinθr\sin \theta , and write the term x2+y2{{x}^{2}}+{{y}^{2}} as r2{{r}^{2}} .