Solveeit Logo

Question

Question: How do you evaluate the integral \(\int {\dfrac{{\arctan x}}{{{x^2}}}} \)?...

How do you evaluate the integral arctanxx2\int {\dfrac{{\arctan x}}{{{x^2}}}} ?

Explanation

Solution

We are given an expression. We have to find the integral of the expression. We can use the substitution method to integrate the expression by substituting u=arctanxu = \arctan x and v=1xv = - \dfrac{1}{x}. Then, apply the integration by parts method to integrate the expression. Then, again replace the value of u and v in the resultant expression.

Complete step by step solution:
We have to find the integral of arctanxx2dx\int {\dfrac{{\arctan x}}{{{x^2}}}} dx

First, we will apply substitution,

u=arctanx \Rightarrow u = \arctan x ……(1)

Now, we will differentiate u with respect to x, we get:

dudx=ddxarctanx \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\arctan x

dudx=1x2+1 \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{{x^2} + 1}}

du=1x2+1dx \Rightarrow du = \dfrac{1}{{{x^2} + 1}}dx ……(2)

Now, we will substitute vv for 1x - \dfrac{1}{x}.

v=1x \Rightarrow v = - \dfrac{1}{x} ……(3)

Now, we will differentiate v with respect to x, we get:

dvdx=ddx(1x) \Rightarrow \dfrac{{dv}}{{dx}} = \dfrac{d}{{dx}}\left( { - \dfrac{1}{x}} \right)

dvdx=(1x2) \Rightarrow \dfrac{{dv}}{{dx}} = \left( {\dfrac{1}{{{x^2}}}} \right)

dv=1x2dx \Rightarrow dv = \dfrac{1}{{{x^2}}}dx ……(4)

Now, we will apply the integration by parts method, udv=uvvdu\int u dv = uv - \int {vdu}

Now, substitute the values from equation (1), (2), (3) and (4), we get:

I=arctanxx+1x(x2+1)dx\Rightarrow I = - \dfrac{{\arctan x}}{x} + \int {\dfrac{1}{{x\left( {{x^2} + 1} \right)}}dx}

Now, we will apply partial fractions to simplify the expression, 1x(x2+1)\dfrac{1}{{x\left( {{x^2} + 1} \right)}}

1x(x2+1)=Ax+Bx+Cx2+1 \Rightarrow \dfrac{1}{{x\left( {{x^2} + 1} \right)}} = \dfrac{A}{x} + \dfrac{{Bx + C}}{{{x^2} + 1}}

1x(x2+1)=A(x2+1)x(x2+1)+(Bx+C)xx(x2+1) \Rightarrow \dfrac{1}{{x\left( {{x^2} + 1} \right)}} = \dfrac{{A\left( {{x^2} + 1} \right)}}{{x\left( {{x^2} + 1} \right)}} + \dfrac{{\left( {Bx + C} \right)x}}{{x\left( {{x^2} + 1} \right)}}

Simplify the numerator over the common denominator.

A(x2+1)+(Bx+C)x=1 \Rightarrow A\left( {{x^2} + 1} \right) + \left( {Bx + C} \right)x = 1

Simplify the expression, we get:

Ax2+A+Bx2+Cx=1 \Rightarrow A{x^2} + A + B{x^2} + Cx = 1

(A+B)x2+Cx+A=1 \Rightarrow \left( {A + B} \right){x^2} + Cx + A = 1

Now, we will equate the coefficients from each side of equation.

A+B=0 \Rightarrow A + B = 0

C=0 \Rightarrow C = 0

A=1 \Rightarrow A = 1

Now, we will substitute A=1A = 1 into the expression A+B=0A + B = 0 to compute the value of B.

1+B=0 \Rightarrow 1 + B = 0

B=1 \Rightarrow B = - 1

Now, substitute the values of A, B and C into partial fractions.
1x(x2+1)=1x+1x+0x2+1\Rightarrow \dfrac{1}{{x\left( {{x^2} + 1} \right)}} = \dfrac{1}{x} + \dfrac{{ - 1x + 0}}{{{x^2} + 1}}

1x(x2+1)=1xxx2+1 \Rightarrow \dfrac{1}{{x\left( {{x^2} + 1} \right)}} = \dfrac{1}{x} - \dfrac{x}{{{x^2} + 1}}

Now, we will substitute the above equation into the integral expression, I=arctanxx+1x(x2+1)dxI = - \dfrac{{\arctan x}}{x} + \int {\dfrac{1}{{x\left( {{x^2} + 1} \right)}}dx}

I=arctanxx+1xxx2+1dx\Rightarrow I = - \dfrac{{\arctan x}}{x} + \int {\dfrac{1}{x} - \dfrac{x}{{{x^2} + 1}}dx}

Now, integrate the expression.

I=arctanxx+lnxxx2+1dx\Rightarrow I = - \dfrac{{\arctan x}}{x} + \ln \left| x \right| - \int {\dfrac{x}{{{x^2} + 1}}dx}

Now, we will multiply and divide the integral expression by 2.

I=arctanxx+lnx122xx2+1dx\Rightarrow I = - \dfrac{{\arctan x}}{x} + \ln \left| x \right| - \dfrac{1}{2}\int {\dfrac{{2x}}{{{x^2} + 1}}dx}

Now, we will integrate the expression, by applying logarithmic rule

I=arctanxx+lnx12lnx2+1+C \Rightarrow I = - \dfrac{{\arctan x}}{x} + \ln \left| x \right| - \dfrac{1}{2}\ln \left| {{x^2} + 1} \right| + C

Hence the integral of arctanxx2\int {\dfrac{{\arctan x}}{{{x^2}}}} is equal to arctanxx+lnx12lnx2+1+C - \dfrac{{\arctan x}}{x} + \ln \left| x \right| - \dfrac{1}{2}\ln \left| {{x^2} + 1} \right| + C.

Note: The students must note that we have applied the integration by parts method which is used when the integral is given as a combination of two functions. A useful rule of integration by parts is known as ILATE which is given by:
I: Inverse trigonometric functions
L: logarithmic functions
A: Algebraic functions
T: Trigonometric functions
E: exponential functions