Solveeit Logo

Question

Question: How do you evaluate the integral \(\int{\dfrac{1}{1-\sin x}dx}\) from \(0\) to \(\dfrac{\pi }{2}\)?...

How do you evaluate the integral 11sinxdx\int{\dfrac{1}{1-\sin x}dx} from 00 to π2\dfrac{\pi }{2}?

Explanation

Solution

In this problem we need to calculate the definite integral value of the given function in the given range or limits. For this we need to first calculate the indefinite integral value of the given function. In the given function we can observe that the trigonometric ratio sinx\sin x in the denominator. So, we will use a substitution method to solve the indefinite integral value. In this method we are going to use the substitution u=tan(x2)u=\tan \left( \dfrac{x}{2} \right) and calculate the differentiation of the substitution. Now we will convert the given function into simplified form by using the substitution value and some trigonometric formulas. Now we will simplify the equation and apply the integration formulas to get the value of indefinite integral value. After that we will apply the limits for the calculated value to get the required result.

Complete step by step solution:
Given that, 11sinxdx\int{\dfrac{1}{1-\sin x}dx}.
Take the substitution u=tan(x2)u=\tan \left( \dfrac{x}{2} \right).
Differentiating the above value with respect to xx, then we will get
du=12sec2(x2)dx\Rightarrow du=\dfrac{1}{2}{{\sec }^{2}}\left( \dfrac{x}{2} \right)dx
From the trigonometric identity sec2θtan2θ=1{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1, we can write the above value as
du=12(1+tan2x2)dx du=12(1+u2)dx \begin{aligned} & \Rightarrow du=\dfrac{1}{2}\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)dx \\\ & \Rightarrow du=\dfrac{1}{2}\left( 1+{{u}^{2}} \right)dx \\\ \end{aligned}
In the trigonometry we have the formula sinθ=2tanθ1+tan2θ\sin \theta =\dfrac{2\tan \theta }{1+{{\tan }^{2}}\theta }. From this formula we can write
sinx=2u1+u2\Rightarrow \sin x=\dfrac{2u}{1+{{u}^{2}}}
Substituting all the values we have in the given function, then we will get
11sinxdx=112u1+u2(2du1+u2)\Rightarrow \int{\dfrac{1}{1-\sin x}dx}=\int{\dfrac{1}{1-\dfrac{2u}{1+{{u}^{2}}}}\left( \dfrac{2du}{1+{{u}^{2}}} \right)}
Simplifying the above equation, then we will get
11sinxdx=1+u21+u22u×21+u2du 11sinxdx=2(u1)2du \begin{aligned} & \Rightarrow \int{\dfrac{1}{1-\sin x}dx}=\int{\dfrac{1+{{u}^{2}}}{1+{{u}^{2}}-2u}\times \dfrac{2}{1+{{u}^{2}}}du} \\\ & \Rightarrow \int{\dfrac{1}{1-\sin x}dx}=\int{\dfrac{2}{{{\left( u-1 \right)}^{2}}}du} \\\ \end{aligned}
Using the integration formula 1x2dx=1x+C\int{\dfrac{1}{{{x}^{2}}}dx}=-\dfrac{1}{x}+C in the above equation, then we will get
11sinxdx=2u1+C 11sinxdx=2tan(x2)1+C \begin{aligned} & \Rightarrow \int{\dfrac{1}{1-\sin x}dx}=-\dfrac{2}{u-1}+C \\\ & \Rightarrow \int{\dfrac{1}{1-\sin x}dx}=-\dfrac{2}{\tan \left( \dfrac{x}{2} \right)-1}+C \\\ \end{aligned}
The definite integral for the above equation will be
0y11sinxdx=[2tan(x2)1]0y 0y11sinxdx=(2tan(y2)1)(201) 0y11sinxdx=22tan(y2)1 \begin{aligned} & \Rightarrow \int\limits_{0}^{y}{\dfrac{1}{1-\sin x}dx}=\left[ -\dfrac{2}{\tan \left( \dfrac{x}{2} \right)-1} \right]_{0}^{y} \\\ & \Rightarrow \int\limits_{0}^{y}{\dfrac{1}{1-\sin x}dx}=\left( -\dfrac{2}{\tan \left( \dfrac{y}{2} \right)-1} \right)-\left( -\dfrac{2}{0-1} \right) \\\ & \Rightarrow \int\limits_{0}^{y}{\dfrac{1}{1-\sin x}dx}=-2-\dfrac{2}{\tan \left( \dfrac{y}{2} \right)-1} \\\ \end{aligned}
Let us check the value of above integral when y=π2y=\dfrac{\pi }{2}, by substituting y=π2y=\dfrac{\pi }{2} in the above equation, then we will get
22tan(π22)1=22tan(π4)1\Rightarrow -2-\dfrac{2}{\tan \left( \dfrac{\dfrac{\pi }{2}}{2} \right)-1}=-2-\dfrac{2}{\tan \left( \dfrac{\pi }{4} \right)-1}
We know that the value of tan(π4)=1\tan \left( \dfrac{\pi }{4} \right)=1, then the above equation is modified as
22tan(π4)1=2211 22tan(π4)1=220 \begin{aligned} & \Rightarrow -2-\dfrac{2}{\tan \left( \dfrac{\pi }{4} \right)-1}=-2-\dfrac{2}{1-1} \\\ & \Rightarrow -2-\dfrac{2}{\tan \left( \dfrac{\pi }{4} \right)-1}=-2-\dfrac{2}{0} \\\ \end{aligned}
Here we have the infinite form which is 20\dfrac{2}{0}. We can’t divide the any number with zero. So we can write that
limyπ2(22tan(y2)1)=\Rightarrow \displaystyle \lim_{y \to \dfrac{\pi }{2}}\left( -2-\dfrac{2}{\tan \left( \dfrac{y}{2} \right)-1} \right)=-\infty
Hence the above integral is divergent. So, we can’t find the integration of the given function.

Note: For this problem we have got the divergent integral, so we have terminated the process. But if we don’t get the divergent integral then we need to continue the process by applying the integral to the calculated value and simplifying the equation.