Solveeit Logo

Question

Question: How do you evaluate the integral by changing to cylindrical coordinates? \(\int_{-2}^{2}{\int_{-\s...

How do you evaluate the integral by changing to cylindrical coordinates?
224y24y2x2+y22(xz)dzdxdy\int_{-2}^{2}{\int_{-\sqrt{4-{{y}^{2}}}}^{\sqrt{4-{{y}^{2}}}}{\int_{\sqrt{{{x}^{2}}+{{y}^{2}}}}^{2}{\left( xz \right)dzdxdy}}}

Explanation

Solution

The integral given in the above question is in the form of the rectangular coordinates (x,y,z)\left( x,y,z \right). As stated in the question, we have to change them to the cylindrical coordinates which are (r,θ,z)\left( r,\theta ,z \right). For this, we have to use the relations x=rcosθx=r\cos \theta , y=rsinθy=r\sin \theta and z=zz=z. The limits of the integration are also to be changed using these relations.

Complete step by step answer:
Let us write the integral given in the question as
I=224y24y2x2+y22(xz)dzdxdyI=\int_{-2}^{2}{\int_{-\sqrt{4-{{y}^{2}}}}^{\sqrt{4-{{y}^{2}}}}{\int_{\sqrt{{{x}^{2}}+{{y}^{2}}}}^{2}{\left( xz \right)dzdxdy}}}
The above question is directing us to change the rectangular coordinates (x,y,z)\left( x,y,z \right) to the cylindrical coordinates (r,θ,z)\left( r,\theta ,z \right). The cylindrical coordinates are related to the cylindrical coordinates as
x=rcosθx=r\cos \theta , y=rsinθy=r\sin \theta and z=zz=z
From the order of the above integral, we can observe that the variable for the innermost integral is zz, for the middle is xx, and for the outermost is yy. So the limits for these are noted from the above integral as

& z\Rightarrow \left( \sqrt{{{x}^{2}}+{{y}^{2}}},2 \right) \\\ & x\Rightarrow \left( -\sqrt{4-{{y}^{2}}},\sqrt{4-{{y}^{2}}} \right) \\\ & z\Rightarrow \left( -2,2 \right) \\\ \end{aligned}$$ Now, substituting $x=r\cos \theta $, $y=r\sin \theta $ and $z=z$ in the lower limit of $z$ we get $\begin{aligned} & \Rightarrow z=\sqrt{{{\left( r\cos \theta \right)}^{2}}+{{\left( r\sin \theta \right)}^{2}}} \\\ & \Rightarrow z=\sqrt{{{r}^{2}}{{\cos }^{2}}\theta +{{r}^{2}}{{\sin }^{2}}\theta } \\\ & \Rightarrow z=\sqrt{{{r}^{2}}\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)} \\\ \end{aligned}$ We know that ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$. So we get $\begin{aligned} & \Rightarrow z=\sqrt{{{r}^{2}}\left( 1 \right)} \\\ & \Rightarrow z=r \\\ \end{aligned}$ So the lower limit of $z$ is equal to $$r$$. The upper limit of $z$ in the cylindrical coordinates will be the same, since the $z$ coordinate is same. So the upper limit of $z$ is equal to $2$. Now, substituting $x=r\cos \theta $, $y=r\sin \theta $ in the upper limit for $x$ we get $$\begin{aligned} & \Rightarrow r\cos \theta =\sqrt{4-{{\left( r\sin \theta \right)}^{2}}} \\\ & \Rightarrow r\cos \theta =\sqrt{4-{{r}^{2}}{{\sin }^{2}}\theta } \\\ \end{aligned}$$ Squaring both the sides, we get $$\begin{aligned} & \Rightarrow {{r}^{2}}{{\cos }^{2}}\theta =4-{{r}^{2}}{{\sin }^{2}}\theta \\\ & \Rightarrow {{r}^{2}}{{\cos }^{2}}\theta +{{r}^{2}}{{\sin }^{2}}\theta =4 \\\ & \Rightarrow {{r}^{2}}\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)=4 \\\ & \Rightarrow {{r}^{2}}=4 \\\ \end{aligned}$$ On solving we get $r=2$ Thus, the lower limit of $r$ is $0$ and the upper limit of $r$ is $2$. Lastly, we know that the range for the cylindrical coordinate $\theta $ is $\left( 0,2\pi \right)$. Hence, the given integral can now be written in the cylindrical coordinates as $$\begin{aligned} & \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\int_{r}^{2}{\left( r\cos \theta z \right)rdzdrd\theta }}} \\\ & \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\int_{r}^{2}{zdz\left( {{r}^{2}} \right)dr\left( \cos \theta \right)d\theta }}} \\\ \end{aligned}$$ Firstly, solving the innermost integral, we have $$\begin{aligned} & \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\left[ \dfrac{{{z}^{2}}}{2} \right]_{r}^{2}\left( {{r}^{2}} \right)dr\left( \cos \theta \right)d\theta }} \\\ & \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\left[ \dfrac{{{2}^{2}}-{{r}^{2}}}{2} \right]_{r}^{2}\left( {{r}^{2}} \right)dr\left( \cos \theta \right)d\theta }} \\\ & \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\left( 2-\dfrac{{{r}^{2}}}{2} \right)\left( {{r}^{2}} \right)dr\left( \cos \theta \right)d\theta }} \\\ & \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\left( 2{{r}^{2}}-\dfrac{{{r}^{4}}}{2} \right)dr\left( \cos \theta \right)d\theta }} \\\ \end{aligned}$$ Now, we solve the integration with respect to $r$ as $$\begin{aligned} & \Rightarrow I=\int_{0}^{2\pi }{\left[ \dfrac{2{{r}^{3}}}{3}-\dfrac{{{r}^{5}}}{10} \right]_{0}^{2}\left( \cos \theta \right)d\theta } \\\ & \Rightarrow I=\int_{0}^{2\pi }{\left( \dfrac{2{{\left( 2 \right)}^{3}}}{3}-\dfrac{{{\left( 2 \right)}^{5}}}{10}-0 \right)\left( \cos \theta \right)d\theta } \\\ & \Rightarrow I=\int_{0}^{2\pi }{\left( \dfrac{16}{3}-\dfrac{16}{5} \right)\left( \cos \theta \right)d\theta } \\\ & \Rightarrow I=\dfrac{32}{15}\int_{0}^{2\pi }{\left( \cos \theta \right)d\theta } \\\ \end{aligned}$$ Now, we know that $\int{\cos \theta d\theta }=\sin \theta $. So we get $$\begin{aligned} & \Rightarrow I=\dfrac{32}{15}\left[ \sin \theta \right]_{0}^{2\pi } \\\ & \Rightarrow I=\dfrac{32}{15}\left( \sin 2\pi -\sin 0 \right) \\\ & \Rightarrow I=\dfrac{32}{15}\left( 0-0 \right) \\\ & \Rightarrow I=0 \\\ \end{aligned}$$ Hence, the given integral is equal to zero. **Note:** The differentials of the rectangular coordinates $dz dx dy$ in the above question are not simply replaced with the differentials of the cylindrical coordinates $dzdrdd\theta $. The cylindrical coordinate $r$ is also multiplied with them and they are written as $rdzdrdd\theta $ instead of $dzdrdd\theta $. Also, after solving the equation ${{r}^{2}}=4$, we will get the two values for $r$, which will be $2$ and $-2$. But since $r$ denotes the distance, so it cannot be negative and will begin from zero only. It is for this reason that we have taken the limits of $r$ from zero to $2$.