Solveeit Logo

Question

Question: How do you evaluate the given indefinite integral \(\int{\ln \left( t+1 \right)dt}\)?...

How do you evaluate the given indefinite integral ln(t+1)dt\int{\ln \left( t+1 \right)dt}?

Explanation

Solution

We start solving the problem by equating the given indefinite integral to a variable. We then recall the integration by parts as f(x)×g(x)dx=f(x)g(x)dx(d(f(x))dxg(x)dx)dx\int{f\left( x \right)\times g\left( x \right)dx}=f\left( x \right)\int{g\left( x \right)dx}-\int{\left( \dfrac{d\left( f\left( x \right) \right)}{dx}\int{g\left( x \right)dx} \right)dx} to proceed through the problem. We then make the necessary calculations and make use of the results adx=ax+C\int{adx}=ax+C, d(lny)dx=1ydydx\dfrac{d\left( \ln y \right)}{dx}=\dfrac{1}{y}\dfrac{dy}{dx} to proceed further through the problem. We then make use of the fact that 1a+xdx=ln(a+x)+C\int{\dfrac{1}{a+x}dx}=\ln \left( a+x \right)+C and make the necessary calculations to get the required answer.

Complete step by step answer:
According to the problem, we are asked to find the result of an indefinite integral ln(t+1)dt\int{\ln \left( t+1 \right)dt}.
Let us assume I=ln(t+1)dtI=\int{\ln \left( t+1 \right)dt}.
I=ln(t+1)×1dt\Rightarrow I=\int{\ln \left( t+1 \right)\times 1dt} ---(1).
We can see that the integrand is in the form of f(x)×g(x)dx\int{f\left( x \right)\times g\left( x \right)dx}. From integration by parts, we know that f(x)×g(x)dx=f(x)g(x)dx(d(f(x))dxg(x)dx)dx\int{f\left( x \right)\times g\left( x \right)dx}=f\left( x \right)\int{g\left( x \right)dx}-\int{\left( \dfrac{d\left( f\left( x \right) \right)}{dx}\int{g\left( x \right)dx} \right)dx}. Let us use this result in equation (1).
I=ln(t+1)1dt(d(ln(t+1))dt1dt)dt\Rightarrow I=\ln \left( t+1 \right)\int{1dt}-\int{\left( \dfrac{d\left( \ln \left( t+1 \right) \right)}{dt}\int{1dt} \right)dt} ---(2).
We know that adx=ax+C\int{adx}=ax+C and d(lny)dx=1ydydx\dfrac{d\left( \ln y \right)}{dx}=\dfrac{1}{y}\dfrac{dy}{dx}. Let us use these results in equation (2).
I=tln(t+1)(tt+1)dt\Rightarrow I=t\ln \left( t+1 \right)-\int{\left( \dfrac{t}{t+1} \right)dt}.
I=tln(t+1)(t+11t+1)dt\Rightarrow I=t\ln \left( t+1 \right)-\int{\left( \dfrac{t+1-1}{t+1} \right)dt}.
I=tln(t+1)(11t+1)dt\Rightarrow I=t\ln \left( t+1 \right)-\int{\left( 1-\dfrac{1}{t+1} \right)dt}.
I=tln(t+1)1dt+1t+1dt\Rightarrow I=t\ln \left( t+1 \right)-\int{1dt}+\int{\dfrac{1}{t+1}dt} ---(4).
We know that adx=ax+C\int{adx}=ax+C and 1a+xdx=ln(a+x)+C\int{\dfrac{1}{a+x}dx}=\ln \left( a+x \right)+C. Let us use this result in equation (4).
I=tln(t+1)t+ln(t+1)+C\Rightarrow I=t\ln \left( t+1 \right)-t+\ln \left( t+1 \right)+C.
I=(t+1)ln(t+1)t+C\Rightarrow I=\left( t+1 \right)\ln \left( t+1 \right)-t+C.

\therefore We have found the result of integration ln(t+1)dt\int{\ln \left( t+1 \right)dt} as (t+1)ln(t+1)t+C\left( t+1 \right)\ln \left( t+1 \right)-t+C.

Note: We should perform each step carefully in order to avoid confusion and calculation mistakes. We should not forget to add constants of integration while solving the problems related to indefinite integrals. Similarly, we can expect problems to find the value of 03ln(t+1)dt\int\limits_{0}^{3}{\ln \left( t+1 \right)dt}. We can solve the problem by first assuming 1+t=x1+t=x in the integral and then performing the integration by parts to get the required answer.