Solveeit Logo

Question

Question: How do you evaluate the definite integral \(\int{\left| x-1 \right|dx}\) from \(\left[ 0,5 \right]\)...

How do you evaluate the definite integral x1dx\int{\left| x-1 \right|dx} from [0,5]\left[ 0,5 \right] ?

Explanation

Solution

At first we find out in which interval x1\left| x-1 \right| is negative. We then divide the integral at the point of discontinuity and carry out the integration separately by applying the required formulae of integration.

Complete step-by-step solution:
The given definite integral is
05x1dx\int\limits_{0}^{5}{\left| x-1 \right|dx}
Let us first analyse the function x1\left| x-1 \right| . We know that,
x-1\to \left\\{ \begin{aligned} & <0,x<1 \\\ & >0,x>1 \\\ & =0,x=1 \\\ \end{aligned} \right\\}
Thus, we can say that
\left| x-1 \right|=\left\\{ \begin{aligned} & x-1,x>1 \\\ & -\left( x-1 \right),x<1 \\\ \end{aligned} \right\\}
This means that there exists a discontinuity at x=1x=1 . So, we need to break the integral at x=1x=1 and perform the integrations separately. The integral can be written as,
05x1dx=01x1dx+15x1dx\Rightarrow \int\limits_{0}^{5}{\left| x-1 \right|dx}=\int\limits_{0}^{1}{\left| x-1 \right|dx}+\int\limits_{1}^{5}{\left| x-1 \right|dx}
We have shown earlier that x1\left| x-1 \right| can be written as (x1)-\left( x-1 \right) in the interval [0,1)[0,1) and as (x1)\left( x-1 \right) in the interval (1,5](1,5] . The integral thus becomes,
01x1dx+15x1dx=01(x1)dx+15(x1)dx\Rightarrow \int\limits_{0}^{1}{\left| x-1 \right|dx}+\int\limits_{1}^{5}{\left| x-1 \right|dx}=\int\limits_{0}^{1}{-\left( x-1 \right)dx}+\int\limits_{1}^{5}{\left( x-1 \right)dx}
Now, we can write 01(x1)dx\int\limits_{0}^{1}{-\left( x-1 \right)dx} as 10(x1)dx\int\limits_{1}^{0}{\left( x-1 \right)dx} . Rewriting the integral, we get,
01(x1)dx+15(x1)dx=10(x1)dx+15(x1)dx....equation1\Rightarrow \int\limits_{0}^{1}{-\left( x-1 \right)dx}+\int\limits_{1}^{5}{\left( x-1 \right)dx}=\int\limits_{1}^{0}{\left( x-1 \right)dx}+\int\limits_{1}^{5}{\left( x-1 \right)dx}....equation1
Let us first integral (x1)\left( x-1 \right) as a definite integral.
(x1)dx=xdx1.dx\int{\left( x-1 \right)dx}=\int{xdx}-\int{1.dx}
We know that the integration of xndx=xn+1n+1\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1} . Applying this formula in the above integration, we get,
(x1)dx=x1+11+1x0+10+1\Rightarrow \int{\left( x-1 \right)dx}=\dfrac{{{x}^{1+1}}}{1+1}-\dfrac{{{x}^{0+1}}}{0+1}
Which gets simplified to
(x1)dx=x22x\Rightarrow \int{\left( x-1 \right)dx}=\dfrac{{{x}^{2}}}{2}-x
Applying this integration to equation1equation1 we get,
10(x1)dx+15(x1)dx=(x22x)10+(x22x)15\Rightarrow \int\limits_{1}^{0}{\left( x-1 \right)dx}+\int\limits_{1}^{5}{\left( x-1 \right)dx}=\left( \dfrac{{{x}^{2}}}{2}-x \right)_{1}^{0}+\left( \dfrac{{{x}^{2}}}{2}-x \right)_{1}^{5}
Which we can evaluate by applying the limits. The integration thus becomes
10(x1)dx+15(x1)dx=(0(1221))+((5225)(1221))\Rightarrow \int\limits_{1}^{0}{\left( x-1 \right)dx}+\int\limits_{1}^{5}{\left( x-1 \right)dx}=\left( 0-\left( \dfrac{{{1}^{2}}}{2}-1 \right) \right)+\left( \left( \dfrac{{{5}^{2}}}{2}-5 \right)-\left( \dfrac{{{1}^{2}}}{2}-1 \right) \right)
Further simplification of the expression gives us,
10(x1)dx+15(x1)dx=(12)+(152+12)\Rightarrow \int\limits_{1}^{0}{\left( x-1 \right)dx}+\int\limits_{1}^{5}{\left( x-1 \right)dx}=\left( \dfrac{1}{2} \right)+\left( \dfrac{15}{2}+\dfrac{1}{2} \right)
Performing the additions and subtractions, the integration becomes,
10(x1)dx+15(x1)dx=(152+22)\Rightarrow \int\limits_{1}^{0}{\left( x-1 \right)dx}+\int\limits_{1}^{5}{\left( x-1 \right)dx}=\left( \dfrac{15}{2}+\dfrac{2}{2} \right)
Which finally gives
10(x1)dx+15(x1)dx=172\Rightarrow \int\limits_{1}^{0}{\left( x-1 \right)dx}+\int\limits_{1}^{5}{\left( x-1 \right)dx}=\dfrac{17}{2}
Therefore, we can conclude that the definite integral x1dx\int{\left| x-1 \right|dx} from [0,5]\left[ 0,5 \right] can be evaluated to 172\dfrac{17}{2} .

Note: We must remember that the modular function only gives positive outputs. Therefore, we must carefully find out at which point or points the function has zero value and based upon that, we analyse the intervals where the function is positive or negative. We can also solve the problem using the graphical method. We draw the graph of x1\left| x-1 \right| and note the region within which we have to integrate. Here, the area under the graph will be two triangles and thus knowing the important points on the graph, we can easily find out the area under the graph.