Solveeit Logo

Question

Question: How do you evaluate the definite integral \(\int{\left( 2\cos 2x-{{\csc }^{2}}x \right)dx}\) from \(...

How do you evaluate the definite integral (2cos2xcsc2x)dx\int{\left( 2\cos 2x-{{\csc }^{2}}x \right)dx} from [π6,π2]\left[ \dfrac{\pi }{6},\dfrac{\pi }{2} \right] ?

Explanation

Solution

We have been given to calculate the definite integral of trigonometric functions, cosine and cosecant function. It has to be integrated with respect to dxdx. We shall integrate the two parts of the given function separately and then reassemble them in the main function to apply the upper limit and lower limits of integration as we have to perform definite integration.

Complete step by step solution:
Given that we have to find definite integral of (2cos2xcsc2x)dx\int{\left( 2\cos 2x-{{\csc }^{2}}x \right)dx} within the interval
[π6,π2]\left[ \dfrac{\pi }{6},\dfrac{\pi }{2} \right].
From this statement, we understand that the upper limit of the definite integral is π2\dfrac{\pi }{2} and the lower limit of definite integral is π6\dfrac{\pi }{6}.
Thus, the definite integral is given as
π6π2(2cos2xcsc2x)dx\int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}}{\left( 2\cos 2x-{{\csc }^{2}}x \right)dx}
π6π2(2cos2xcsc2x)dx=π6π22cos2xdxcsc2x.dx\int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}}{\left( 2\cos 2x-{{\csc }^{2}}x \right)dx}=\int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}}{2\cos 2xdx-}{{\csc }^{2}}x.dx
We shall solve the expression by separately performing the indefinite integration of the two terms which shall be re-combined again to apply the limits.
Let I1=cos2x.dx{{I}_{1}}=\int{\cos 2x.dx} and let I2=csc2x.dx{{I}_{2}}=\int{{{\csc }^{2}}x.dx}.
π6π2(2cos2xcsc2x)dx=(2I1I2)π6π2\Rightarrow \int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}}{\left( 2\cos 2x-{{\csc }^{2}}x \right)dx=}\left. \left( 2{{I}_{1}}-{{I}_{2}} \right) \right|_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}} ………………… equation (1)
We shall first solve I1{{I}_{1}}.
I1=cos2x.dx\Rightarrow {{I}_{1}}=\int{\cos 2x.dx}
Substituting dx=d(2x)2dx=\dfrac{d\left( 2x \right)}{2} as d(2x)=2dxd\left( 2x \right)=2dx , we get
I1=cos2x.d(2x)2\Rightarrow {{I}_{1}}=\int{\cos 2x.\dfrac{d\left( 2x \right)}{2}}
I1=12cos2x.d(2x)\Rightarrow {{I}_{1}}=\dfrac{1}{2}\int{\cos 2x.d\left( 2x \right)}
We know that the integral of cosine function is sine function, that is, cosxdx=sinx+C\int{\cos xdx}=\sin x+C.
Substituting this value, we get
I1=12sin2x+C\Rightarrow {{I}_{1}}=\dfrac{1}{2}\sin 2x+C ……………… equation (2)
Now we shall solve I2{{I}_{2}}.
I2=csc2x.dx{{I}_{2}}=\int{{{\csc }^{2}}x.dx}
From the conventional formulae of integration, we know that csc2xdx=cotx+C\int{{{\csc }^{2}}xdx}=-\cot x+C
I2=cotx+C\Rightarrow {{I}_{2}}=-\cot x+C …………………. Equation (3)
Substituting the values I1{{I}_{1}} and I2{{I}_{2}} from equations (2) and (3) to equation (1), we get
π6π2(2cos2xcsc2x)dx=(2(12sin2x)(cotx))π6π2\Rightarrow \int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}}{\left( 2\cos 2x-{{\csc }^{2}}x \right)dx=}\left. \left( 2\left( \dfrac{1}{2}\sin 2x \right)-\left( -\cot x \right) \right) \right|_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}}
π6π2(2cos2xcsc2x)dx=(sin2x+cotx)π6π2\Rightarrow \int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}}{\left( 2\cos 2x-{{\csc }^{2}}x \right)dx=}\left. \left( \sin 2x+\cot x \right) \right|_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}}
Applying the upper and lower limits of integration, we get
π6π2(2cos2xcsc2x)dx=sin2.π2+cotπ2(sin2.π6+cotπ6)\Rightarrow \int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}}{\left( 2\cos 2x-{{\csc }^{2}}x \right)dx=}\sin 2.\dfrac{\pi }{2}+\cot \dfrac{\pi }{2}-\left( \sin 2.\dfrac{\pi }{6}+\cot \dfrac{\pi }{6} \right)
π6π2(2cos2xcsc2x)dx=sinπsinπ3+cotπ2cotπ6\Rightarrow \int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}}{\left( 2\cos 2x-{{\csc }^{2}}x \right)dx=}\sin \pi -\sin \dfrac{\pi }{3}+\cot \dfrac{\pi }{2}-\cot \dfrac{\pi }{6}
We know that sinπ=0,sinπ3=32,cotπ6=3\sin \pi =0,\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2},\cot \dfrac{\pi }{6}=\sqrt{3} and cotπ2=0\cot \dfrac{\pi }{2}=0. Putting these values, we get
π6π2(2cos2xcsc2x)dx=032+03\Rightarrow \int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}}{\left( 2\cos 2x-{{\csc }^{2}}x \right)dx=}0-\dfrac{\sqrt{3}}{2}+0-\sqrt{3}
π6π2(2cos2xcsc2x)dx=3232\Rightarrow \int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}}{\left( 2\cos 2x-{{\csc }^{2}}x \right)dx=}\dfrac{-\sqrt{3}-2\sqrt{3}}{2}
π6π2(2cos2xcsc2x)dx=332\Rightarrow \int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}}{\left( 2\cos 2x-{{\csc }^{2}}x \right)dx=}\dfrac{-3\sqrt{3}}{2}
Putting the value of 3=1.732\sqrt{3}=1.732, we have
π6π2(2cos2xcsc2x)dx=3×1.7322\Rightarrow \int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}}{\left( 2\cos 2x-{{\csc }^{2}}x \right)dx=}\dfrac{-3\times 1.732}{2}
π6π2(2cos2xcsc2x)dx2.5981\Rightarrow \int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}}{\left( 2\cos 2x-{{\csc }^{2}}x \right)dx}\approx -2.5981
Therefore, the definite integral (2cos2xcsc2x)dx\int{\left( 2\cos 2x-{{\csc }^{2}}x \right)dx} from [π6,π2]\left[ \dfrac{\pi }{6},\dfrac{\pi }{2} \right] is approximately equal to 2.5981-2.5981.

Note: Another method of integrating I2{{I}_{2}} is by applying the reduction formulae and I1{{I}_{1}} could have also been integrated by using the trigonometric properties cos2x=12sin2x\cos 2x=1-2{{\sin }^{2}}x and then further essential substitutions. However, this method of integrating I1{{I}_{1}} would be more time consuming and complex.