Solveeit Logo

Question

Question: How do you evaluate the definite integral \[\int {\dfrac{{\cos x}}{{1 + \sin x}}} dx\] from \[\left[...

How do you evaluate the definite integral cosx1+sinxdx\int {\dfrac{{\cos x}}{{1 + \sin x}}} dx from [0,π2]\left[ {0,\dfrac{\pi }{2}} \right]

Explanation

Solution

Hint : In order to solve this integral, first of all, we will assume 1+sinx=t1 + \sin x = t .After that we will differentiate it and transfer the given integral in terms of tt .And then we will use the formula as, dxx=lnx+c\int {\dfrac{{dx}}{x} = \ln } |x| + c to solve the given integral. And finally, we will substitute the new limits to get the required result.

Complete step-by-step answer :
In this question, we have to solve the given definite integral, cosx1+sinxdx\int {\dfrac{{\cos x}}{{1 + \sin x}}} dx from [0,π2]\left[ {0,\dfrac{\pi }{2}} \right]
which means we have to solve, 0π2cosx1+sinxdx\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\cos x}}{{1 + \sin x}}} dx
Let us consider the given integral as,
I= 0π2cosx1+sinxdx (i)I = {\text{ }}\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\cos x}}{{1 + \sin x}}} dx{\text{ }} - - - \left( i \right)
Now, let us assume 1+sinx=t (ii)1 + \sin x = t{\text{ }} - - - \left( {ii} \right)
As we know that,
ddx(c)=0\dfrac{d}{{dx}}\left( c \right) = 0
ddx(sinx)=cosx\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x
So, by differentiating both the sides of equation (ii)\left( {ii} \right) we get
(0+cosx)=dtdx\left( {0 + \cos x} \right) = \dfrac{{dt}}{{dx}}
(0+cosx)dx=dt (iii)\Rightarrow \left( {0 + \cos x} \right)dx = dt{\text{ }} - - - \left( {iii} \right)
So, by substituting the values from equation (ii)\left( {ii} \right) and equation (iii)\left( {iii} \right) in equation (i)\left( i \right) we get,
I= abdtt I = {\text{ }}\int\limits_a^b {\dfrac{{dt}}{t}} {\text{ }}
Now, as we change the variable xx from tt ,we need to change the limits as well.
So, let us find out the value of the units aa and bb by substituting x=0x = 0 and x=π2x = \dfrac{\pi }{2} in equation (ii)\left( {ii} \right)
 a=1+sin(0)\therefore {\text{ }}a = 1 + \sin \left( 0 \right)
a=1+0=1\Rightarrow a = 1 + 0 = 1
And b=1+sin(π2)b = 1 + \sin \left( {\dfrac{\pi }{2}} \right)
b=1+1=2\Rightarrow b = 1 + 1 = 2
Therefore, we get
I= 12dtt I = {\text{ }}\int\limits_1^2 {\dfrac{{dt}}{t}} {\text{ }}
Now, we know that
dxx=lnx+c\int {\dfrac{{dx}}{x}} = \ln |x| + c
So, we get
I= [lnt]12I = {\text{ }}\left[ {\ln |t|} \right]_1^2
I= [ln2ln1]\Rightarrow I = {\text{ }}\left[ {\ln |2| - \ln |1|} \right]
We know that ln1=0\ln |1| = 0
So, I= [ln20]I = {\text{ }}\left[ {\ln |2| - 0} \right]
I=ln2\Rightarrow I = \ln |2|
Hence, we get the value of the definite integral cosx1+sinxdx\int {\dfrac{{\cos x}}{{1 + \sin x}}} dx as ln2\ln |2|
So, the correct answer is “ln2\ln |2|”.

Note : In this question, many students solve the integral correctly but forget to change the limits. That is like in the above equation, they forget to transforms the limits 00 and π2\dfrac{\pi }{2} into 11 and 22 respectively and get the wrong answer even after doing the calculation correctly. So, this must be taken care of in the case of definite integrals.
Also, this question can be solved using a result, i.e., f(x)f(x)dx=lnf(x)+c\int {\dfrac{{f'\left( x \right)}}{{f\left( x \right)}}dx = \ln |f\left( x \right)| + c}
As, the given integral is I= 0π2cosx1+sinxdx (i)I = {\text{ }}\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\cos x}}{{1 + \sin x}}} dx{\text{ }} - - - \left( i \right)
Since, ddx(1+sinx)=cosx\dfrac{d}{{dx}}\left( {1 + \sin x} \right) = \cos x
Therefore, we get
I= 0π2cosx1+sinxdx = [ln1+sinx]0π2I = {\text{ }}\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\cos x}}{{1 + \sin x}}} dx{\text{ }} = {\text{ }}\left[ {\ln |1 + \sin x|} \right]_0^{\dfrac{\pi }{2}}
=[ln(1+sin(π2))][ln(1+sin(0))]= \left[ {\ln \left( {1 + \sin \left( {\dfrac{\pi }{2}} \right)} \right)} \right] - \left[ {\ln \left( {1 + \sin \left( 0 \right)} \right)} \right]
We know that ln1=0\ln |1| = 0
Therefore, we get
=[ln(1+1)]0= \left[ {\ln \left( {1 + 1} \right)} \right] - 0
=ln2= \ln 2 which is the required result.