Solveeit Logo

Question

Question: How do you evaluate the definite integral \[\int {\dfrac{{2x}}{{\sqrt {{x^2} - 1} }}} dx\] from \[1\...

How do you evaluate the definite integral 2xx21dx\int {\dfrac{{2x}}{{\sqrt {{x^2} - 1} }}} dx from 11 to 5\sqrt 5 ?

Explanation

Solution

Hint : We have to find the definite integral of 2xx21dx\int {\dfrac{{2x}}{{\sqrt {{x^2} - 1} }}} dx from 11 to 5\sqrt 5 i.e., 152xx21dx\int\limits_1^{\sqrt 5 } {\dfrac{{2x}}{{\sqrt {{x^2} - 1} }}} dx. For this we will use the substitution method. We will substitute x21{x^2} - 1 by uu and then by using the basic integration formula we will integrate it to find the result. In the final result substitute the original variable back before putting the limits else solution will be wrong.

Complete step-by-step answer :
Definite integrals are those integrals which have limit of integration i.e., upper limit and lower limit. It has two different values for upper limit and lower limit when they are evaluated.
We have to evaluate the definite integral 2xx21dx\int {\dfrac{{2x}}{{\sqrt {{x^2} - 1} }}} dx from 11 to 5\sqrt 5 . We can also write it as 152xx21dx\int\limits_1^{\sqrt 5 } {\dfrac{{2x}}{{\sqrt {{x^2} - 1} }}} dx.
Let I=2xx21dx(1)I = \int {\dfrac{{2x}}{{\sqrt {{x^2} - 1} }}} dx - - - (1).
We can make this integration easier by using some substitution. We will substitute x21{x^2} - 1 by uu.
Let x21=u{x^2} - 1 = u
On differentiating with respect to xx, we get
2x=dudx\Rightarrow 2x = \dfrac{{du}}{{dx}}
On rearranging, we get
du=2xdx\Rightarrow du = 2xdx
On substitution (1)(1) becomes,
I=duuI = \int {\dfrac{{du}}{{\sqrt u }}}
On rewriting we get
I=u12duI = \int {{u^{\dfrac{{ - 1}}{2}}}du}
On integration we get
I=u12+1(12+1)I = \dfrac{{{u^{\dfrac{{ - 1}}{2} + 1}}}}{{\left( {\dfrac{{ - 1}}{2} + 1} \right)}}
On simplification we get
I=2uI = 2\sqrt u
Putting u=x21u = {x^2} - 1, we get
I=2(x21)I = 2\left( {\sqrt {{x^2} - 1} } \right)
Putting the upper of 5\sqrt 5 and lower limit of 11, we get
152xx21dx=2[(5)21(1)21]\Rightarrow \int\limits_1^{\sqrt 5 } {\dfrac{{2x}}{{\sqrt {{x^2} - 1} }}} dx = 2\left[ {\sqrt {{{\left( {\sqrt 5 } \right)}^2} - 1} - \sqrt {{{\left( {\sqrt 1 } \right)}^2} - 1} } \right]
On simplification we get
152xx21dx=2[(51)(11)]\Rightarrow \int\limits_1^{\sqrt 5 } {\dfrac{{2x}}{{\sqrt {{x^2} - 1} }}} dx = 2\left[ {\left( {\sqrt {5 - 1} } \right) - \left( {\sqrt {1 - 1} } \right)} \right]
On further simplification we get
152xx21dx=2[((2)2)0]\Rightarrow \int\limits_1^{\sqrt 5 } {\dfrac{{2x}}{{\sqrt {{x^2} - 1} }}} dx = 2\left[ {\left( {\sqrt {{{\left( 2 \right)}^2}} } \right) - 0} \right]
On simplifying the term in the bracket, we get
152xx21dx=2×2\Rightarrow \int\limits_1^{\sqrt 5 } {\dfrac{{2x}}{{\sqrt {{x^2} - 1} }}} dx = 2 \times 2
On simplification, we get
152xx21dx=4\Rightarrow \int\limits_1^{\sqrt 5 } {\dfrac{{2x}}{{\sqrt {{x^2} - 1} }}} dx = 4
Therefore, the value of the given definite integral 152xx21dx=4\int\limits_1^{\sqrt 5 } {\dfrac{{2x}}{{\sqrt {{x^2} - 1} }}} dx = 4.

Note : In definite integrals, upper and lower limits are given so after integration we just get a number whereas in indefinite integrals, we just integrate a function and add an arbitrary constant. The final value of a definite integral is the value of integral for the upper limit minus value of the integral for the lower limit.