Solveeit Logo

Question

Question: How do you evaluate the definite integral \(\int {\sin 3xdx} \) from \([0,\pi ]\)?...

How do you evaluate the definite integral sin3xdx\int {\sin 3xdx} from [0,π][0,\pi ]?

Explanation

Solution

In this question, we need to find the integration of the given function with respect to x. Here we use a substitution method to evaluate the integration. Firstly, to make integration easier, we take t=3xt = 3x and differentiate it. Then we use the obtained expression for dxdx to integrate the given function. We use the formula of integration of the sine function which is given by, sinxdx=cosx+C\int {\sin xdx} = - \cos x + C and after that we substitute back t=3xt = 3x and simplify to get the desired result.

Complete step by step answer:
Here we are asked to find the antiderivative of the function sin(3x)dx\sin (3x)dx from [0,π][0,\pi ].
i.e. we need to integrate the function sin(3x)dx\sin (3x)dx from [0,π][0,\pi ]
So we find out 0πsin3xdx\int\limits_0^\pi {\sin 3xdx} …… (1)
Firstly, we take 3x3x some variable say t and proceed. i.e. take t=3xt = 3x.
Now differentiating this with respect to x we get,
dtdx=3d(x)dx\Rightarrow \dfrac{{dt}}{{dx}} = 3\dfrac{{d(x)}}{{dx}}
dtdx=3\Rightarrow \dfrac{{dt}}{{dx}} = 3
Now taking dxdx to the other side, we get,
dt=3dx\Rightarrow dt = 3dx
So the expression for dxdx is,
dx=dt3\Rightarrow dx = \dfrac{{dt}}{3}
Substituting t=3xt = 3x in the equation (1), we get,
0πsin3xdx=0πsintdx\Rightarrow \int\limits_0^\pi {\sin 3xdx} = \int\limits_0^\pi {\sin tdx}
Now put dx=dt3dx = \dfrac{{dt}}{3}, we get,
0πsin3xdx=0πsintdt3\Rightarrow \int\limits_0^\pi {\sin 3xdx} = \int\limits_0^\pi {\sin t\dfrac{{dt}}{3}}
Since 13\dfrac{1}{3} is a constant, from the constant coefficient rule we can take it out of integration.
Hence we have,
0πsin3xdx=130πsintdt\Rightarrow \int\limits_0^\pi {\sin 3xdx} = \dfrac{1}{3}\int\limits_0^\pi {\sin tdt} …… (2)
We know the integration formula of sine function which is given by,
sinxdx=cosx+C\int {\sin xdx} = - \cos x + C, where CC is an integration constant.
Since we have definite integral, we do not consider the integration constant.
Hence the equation (2) becomes,
0πsin3xdx=13[cost]0π\Rightarrow \int\limits_0^\pi {\sin 3xdx} = \dfrac{1}{3}\left[ { - \cos t} \right]_0^\pi
Substituting back t=3xt = 3x we get
0πsin3xdx=13[cos3x]0π\Rightarrow \int\limits_0^\pi {\sin 3xdx = \dfrac{1}{3}} \left[ { - \cos 3x} \right]_0^\pi
Now applying the limits we get,
0πsin3xdx=13[cos3πcos3(0)]\Rightarrow \int\limits_0^\pi {\sin 3xdx} = - \dfrac{1}{3}\left[ {\cos 3\pi - \cos 3(0)} \right]
0πsin3xdx=13[cos3πcos0]\Rightarrow \int\limits_0^\pi {\sin 3xdx} = - \dfrac{1}{3}\left[ {\cos 3\pi - \cos 0} \right]
0πsin3xdx=13[11]\Rightarrow \int\limits_0^\pi {\sin 3xdx} = - \dfrac{1}{3}\left[ { - 1 - 1} \right]
0πsin3xdx=13[2]\Rightarrow \int\limits_0^\pi {\sin 3xdx} = - \dfrac{1}{3}\left[ { - 2} \right]
0πsin3xdx=23\Rightarrow \int\limits_0^\pi {\sin 3xdx} = \dfrac{2}{3}

Hence, the value of the definite integral of 0πsin3xdx\int\limits_0^\pi {\sin 3xdx} is given by 23\dfrac{2}{3}.

Note: Students must remember that the antiderivative is nothing but integration. And it is important to substitute 3x3x as some variable, since it makes us to integrate easier and also it avoids confusion. While applying the limits we must be careful. First we have to apply the upper limit which is followed by the lower limit.
The integration of some of the trigonometric functions are given below.
(1) sinxdx=cosx+C\int {\sin xdx} = - \cos x + C
(2) cosxdx=sinx+C\int {\cos xdx} = \sin x + C
(3) sec2xdx=tanx+C\int {{{\sec }^2}xdx} = \tan x + C