Solveeit Logo

Question

Question: How do you evaluate the definite integral \(\int {{2^x}dx} \) from \[\left[ { - 1,1} \right]\] ?...

How do you evaluate the definite integral 2xdx\int {{2^x}dx} from [1,1]\left[ { - 1,1} \right] ?

Explanation

Solution

In this question, we are asked to find the definite integral of 2xdx\int {{2^x}dx} from [1,1]\left[ { - 1,1} \right].
First we will find the integration of 2xdx\int {{2^x}dx} using the substitution method and then we will substitute the limits and find the required answer.

Complete step by step answer:
The given integral is 112xdx\int\limits_{ - 1}^1 {{2^x}dx}
First we need to differentiate 2x{2^x} and then solve the definite integral
Let’s start by differentiating 2x{2^x}
Let us assume y=2xy = {2^x}
Taking log on both sides, we get
logy=xlog2  \Rightarrow \log y = x\log 2\;
Differentiating it,
1ydydx=ddxxlog2\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}x\log 2
We need to use product rule here,
1ydydx=ddxxlog2\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}x\log 2
On rewriting we get,
1ydydx=d(x)dxlog2+dlog2dxx\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{{d(x)}}{{dx}}\log 2 + \dfrac{{d\log 2}}{{dx}}x
Simplifying it,
1ydydx=log2\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \log 2
Transferring the variable to the other side we get,
dydx=ylog2\Rightarrow \dfrac{{dy}}{{dx}} = y\log 2
We know that y=2xy = {2^x}, therefore
dydx=2xlog2\Rightarrow \dfrac{{dy}}{{dx}} = {2^x}\log 2
We know that integration is the reverse of differentiating.
If,
y=2x\Rightarrow y = 2x
dydx=2xlog2\Rightarrow \dfrac{{dy}}{{dx}} = {2^x}\log 2
Then,
2xdx=2xlog2+C\Rightarrow \smallint 2xdx = \dfrac{{{2^x}}}{{\log 2}} + C
2x>0,xR2x > 0,\forall x \in R , there is no negative area so we can insert the limits and evaluate directly.
2xlog2\Rightarrow \dfrac{{{2^x}}}{{\log 2}}
Appling limit from [1,1]\left[ { - 1,1} \right]
1log2(2121)\Rightarrow \dfrac{1}{{\log 2}}({2^1} - {2^{ - 1}})
On rewriting we get,
1log2(212)\Rightarrow \dfrac{1}{{\log 2}}\left( {2 - \dfrac{1}{2}} \right)
Taking LCM on we get,
1log2(32)\Rightarrow \dfrac{1}{{\log 2}}\left( {\dfrac{3}{2}} \right)
Then we get,
32log2\Rightarrow \dfrac{3}{{2\log 2}}

Therefore the definite integral of 2xdx\int {{2^x}dx} from [1,1]\left[ { - 1,1} \right] is 32log2\dfrac{3}{{2\log 2}}

Note: When such types of questions are asked, if the students aren’t sure about the answer they get, they can check it like this.
We know that integration is the reverse of derivation. For example
The number 22 is the derivation of 2x2x
That means, 2x2xis the integration of the number 22
That is,
ddx2x=2\Rightarrow \dfrac{d}{{dx}}2x = 2
2dx=2x\Rightarrow \int {2dx = 2x}
So when you get the answer, always check it by doing the derivation to the answer you got.
As far this sum, we will check now,
We got the integral of 2xdx\int {{2^x}dx} is =2xlog2 = \dfrac{{{2^x}}}{{\log 2}}
Taking derivation of the solution,
ddx2xlog2=1log2ddx2x\Rightarrow \dfrac{d}{{dx}}\dfrac{{{2^x}}}{{\log 2}} = \dfrac{1}{{\log 2}}\dfrac{d}{{dx}}{2^x}
We know that,
ddxax=axloga\Rightarrow \dfrac{d}{{dx}}{a^x} = {a^x}\log a
Applying it we get,
ddx2xlog2=1log22xlog2\Rightarrow \dfrac{d}{{dx}}\dfrac{{{2^x}}}{{\log 2}} = \dfrac{1}{{\log 2}}{2^x}\log 2
Cancelling the log on both numerator and denominator we get,
ddx2xlog2=2x\Rightarrow \dfrac{d}{{dx}}\dfrac{{{2^x}}}{{\log 2}} = {2^x}
Therefore, the answer is correct.