Question
Question: How do you evaluate the definite integral by the limit definition given \(\int {{x^3}dx} \) from\([ ...
How do you evaluate the definite integral by the limit definition given ∫x3dx from[−1,1]?
Solution
Here in this question we apply the integration to the function by the limit definition. The integral is definite integral. In the definite integral the value of x ranges will be given. The formula for integration by the limit definition is defined as a∫bf(x)dx=n→∞limi=1∑nf(xi)Δx
Complete step by step explanation:
Now consider the given integral−1∫1x3dx , this is a definite integral.
The formula for integration by limit definition we have a∫bf(x)dx=n→∞limi=1∑nf(xi)Δx where Δx=nb−a
, a=-1 and b=1 and i=1,2,3,...,nletxi=a+iΔx, xi are the endpoints of the
subintervals.
Now we will find the value of Δx
Δx=nb−a=n1−(−1) ⇒Δx=n1+1=n2
Now we will find the xi and it is given by xi=a+iΔx
xi=−1+i(n2) ⇒xi=n2i−1
The value of f(xi)is determined by
f(xi)=f(n2i−1)Heref(x)=x3, so we have
⇒f(xi)=(n2i−1)3
Use the formula (a−b)3=a3−b3−3ab(a−b)
$
\Rightarrow f({x_i}) = {\left( {\dfrac{{2i}}{n}} \right)^3} - {1^3} - 3\left( {\dfrac{{2i}}{n}} \right)\left( 1
\right)\left( {\dfrac{{2i}}{n} - 1} \right) \\
\Rightarrow f({x_i}) = \dfrac{{8{i^3}}}{{{n^3}}} - 1 - \dfrac{{6i}}{n}\left( {\dfrac{{2i}}{n} - 1} \right)
\\
\Rightarrow f({x_i}) = \dfrac{{8{i^3}}}{{{n^3}}} - 1 - \left( {\dfrac{{12{i^2}}}{{{n^2}}}} \right) +
\dfrac{{6i}}{n} \\
\Rightarrow f({x_i}) = \dfrac{{8{i^3}}}{{{n^3}}} - 1 - \dfrac{{12{i^2}}}{{{n^2}}} + \dfrac{{6i}}{n} \\
Nowwefindthesummationforf({x_i})andmultiplyby\Delta xwehave\sum\limits_{i = 1}^n {f({x_i})\Delta x} = \sum\limits_{i = 1}^n {\left( {\dfrac{{8{i^3}}}{{{n^3}}} - 1 -
\dfrac{{12{i^2}}}{{{n^2}}} + \dfrac{{6i}}{n}} \right)} \left( {\dfrac{2}{n}} \right)Onmultiplication, \Rightarrow \sum\limits_{i = 1}^n {f({x_i})\Delta x} = \sum\limits_{i = 1}^n {\left(
{16\dfrac{{{i^3}}}{{{n^4}}} - \dfrac{2}{n} - 24\dfrac{{{i^2}}}{{{n^3}}} + 12\dfrac{i}{{{n^2}}}} \right)} Applythesummationtoeachandeverytermwehave \Rightarrow \sum\limits_{i = 1}^n {f({x_i})\Delta x} = - \dfrac{2}{n}\sum\limits_{i = 1}^n 1 +
\dfrac{{12}}{{{n^2}}}\sum\limits_{i = 1}^n i - \dfrac{{24}}{{{n^3}}}\sum\limits_{i = 1}^n {{i^2}} +
\dfrac{{16}}{{{n^4}}}\sum\limits_{i = 1}^n {{i^3}} Usetheformulaofsummations\sum\limits_{i = 1}^n 1 = n,\sum\limits_{i = 1}^n i = \dfrac{{n(n + 1)}}{2},\sum\limits_{i = 1}^n
{{i^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6}and\sum\limits_{i = 1}^n {{i^4}} = \dfrac{{{n^2}{{(n +
1)}^2}}}{4}Andsubstituting \Rightarrow \sum\limits_{i = 1}^n {f({x_i})\Delta x} = - \dfrac{2}{n}n + \dfrac{{12}}{{{n^2}}}\left(
{\dfrac{{n(n + 1)}}{2}} \right) - \dfrac{{24}}{{{n^3}}}\left( {\dfrac{{n(n + 1)(2n + 1)}}{6}} \right) +
\dfrac{{16}}{{{n^4}}}\left( {\dfrac{{{n^2}{{(n + 1)}^2}}}{4}} \right)Nowtakenascommonandsimplify \Rightarrow \sum\limits_{i = 1}^n {f({x_i})\Delta x} = - 2 + 6\left( {1 + \dfrac{1}{n}} \right) - 4\left(
{\left( {1 + \dfrac{1}{n}} \right)\left( {2 + \dfrac{1}{n}} \right)} \right) + 4{\left( {1 + \dfrac{1}{n}}
\right)^2}Nowweapplylimittoaboveequationwehave\int\limits_a^b {f(x)dx = \mathop {\lim }\limits_{n \to \infty } } \sum\limits_{i = 1}^n {f({x_i})\Delta
x} $
⇒−1∫1x3dx=n→∞limi=1∑n−2+6(1+n1)−4((1+n1)(2+n1))+4(1+n1)2
On applying limit we have
⇒−1∫1x3dx=−2+6(1+0)−4((1+0)(2+0))+4(1+0)2
As we know that any number divided by the infinity the answer will be zero.
On further simplification we have
⇒−1∫1x3dx=−2+6−8+4 ⇒−1∫1x3dx=0
Hence we found the value of definite integral by the limit definition.
Therefore −1∫1x3dx=0
Note: We have two types of integrals one is definite integral and another is indefinite integral. The definite integral where the limit points of the integration are mentioned and whereas in the indefinite integral the limits points of integration is not mentioned. The formula for the integration by the limit definition is given bya∫bf(x)dx=n→∞limi=1∑nf(xi)Δx. This is the lengthy procedure we can obtain the solution only in two to three steps.