Solveeit Logo

Question

Question: How do you evaluate the definite integral by the limit definition given \(\int {{x^3}dx} \) from\([ ...

How do you evaluate the definite integral by the limit definition given x3dx\int {{x^3}dx} from[1,1][ - 1,1]?

Explanation

Solution

Here in this question we apply the integration to the function by the limit definition. The integral is definite integral. In the definite integral the value of x ranges will be given. The formula for integration by the limit definition is defined as abf(x)dx=limni=1nf(xi)Δx\int\limits_a^b {f(x)dx = \mathop {\lim }\limits_{n \to \infty } } \sum\limits_{i = 1}^n {f({x_i})\Delta x}

Complete step by step explanation:

Now consider the given integral11x3dx\int\limits_{ - 1}^1 {{x^3}dx} , this is a definite integral.
The formula for integration by limit definition we have abf(x)dx=limni=1nf(xi)Δx\int\limits_a^b {f(x)dx = \mathop {\lim }\limits_{n \to \infty } } \sum\limits_{i = 1}^n {f({x_i})\Delta x} where Δx=ban\Delta x = \dfrac{{b - a}}{n}
, a=-1 and b=1 and i=1,2,3,...,ni = 1,2,3,...,nletxi=a+iΔx{x_i} = a + i\Delta x, xi{x_i} are the endpoints of the
subintervals.
Now we will find the value of Δx\Delta x
Δx=ban=1(1)n Δx=1+1n=2n  \Delta x = \dfrac{{b - a}}{n} = \dfrac{{1 - ( - 1)}}{n} \\\ \Rightarrow \Delta x = \dfrac{{1 + 1}}{n} = \dfrac{2}{n} \\\
Now we will find the xi{x_i} and it is given by xi=a+iΔx{x_i} = a + i\Delta x
xi=1+i(2n) xi=2in1  {x_i} = - 1 + i\left( {\dfrac{2}{n}} \right) \\\ \Rightarrow {x_i} = \dfrac{{2i}}{n} - 1 \\\
The value of f(xi)f({x_i})is determined by
f(xi)=f(2in1)f({x_i}) = f\left( {\dfrac{{2i}}{n} - 1} \right)Heref(x)=x3f(x) = {x^3}, so we have
f(xi)=(2in1)3\Rightarrow f({x_i}) = {\left( {\dfrac{{2i}}{n} - 1} \right)^3}
Use the formula (ab)3=a3b33ab(ab){(a - b)^3} = {a^3} - {b^3} - 3ab(a - b)
$
\Rightarrow f({x_i}) = {\left( {\dfrac{{2i}}{n}} \right)^3} - {1^3} - 3\left( {\dfrac{{2i}}{n}} \right)\left( 1
\right)\left( {\dfrac{{2i}}{n} - 1} \right) \\

\Rightarrow f({x_i}) = \dfrac{{8{i^3}}}{{{n^3}}} - 1 - \dfrac{{6i}}{n}\left( {\dfrac{{2i}}{n} - 1} \right)
\\
\Rightarrow f({x_i}) = \dfrac{{8{i^3}}}{{{n^3}}} - 1 - \left( {\dfrac{{12{i^2}}}{{{n^2}}}} \right) +
\dfrac{{6i}}{n} \\
\Rightarrow f({x_i}) = \dfrac{{8{i^3}}}{{{n^3}}} - 1 - \dfrac{{12{i^2}}}{{{n^2}}} + \dfrac{{6i}}{n} \\
Nowwefindthesummationfor Now we find the summation forf({x_i})andmultiplybyand multiply by\Delta xwehavewe have \sum\limits_{i = 1}^n {f({x_i})\Delta x} = \sum\limits_{i = 1}^n {\left( {\dfrac{{8{i^3}}}{{{n^3}}} - 1 -
\dfrac{{12{i^2}}}{{{n^2}}} + \dfrac{{6i}}{n}} \right)} \left( {\dfrac{2}{n}} \right)Onmultiplication, On multiplication, \Rightarrow \sum\limits_{i = 1}^n {f({x_i})\Delta x} = \sum\limits_{i = 1}^n {\left(
{16\dfrac{{{i^3}}}{{{n^4}}} - \dfrac{2}{n} - 24\dfrac{{{i^2}}}{{{n^3}}} + 12\dfrac{i}{{{n^2}}}} \right)} Applythesummationtoeachandeverytermwehave Apply the summation to each and every term we have \Rightarrow \sum\limits_{i = 1}^n {f({x_i})\Delta x} = - \dfrac{2}{n}\sum\limits_{i = 1}^n 1 +
\dfrac{{12}}{{{n^2}}}\sum\limits_{i = 1}^n i - \dfrac{{24}}{{{n^3}}}\sum\limits_{i = 1}^n {{i^2}} +
\dfrac{{16}}{{{n^4}}}\sum\limits_{i = 1}^n {{i^3}} Usetheformulaofsummations Use the formula of summations \sum\limits_{i = 1}^n 1 = n,, \sum\limits_{i = 1}^n i = \dfrac{{n(n + 1)}}{2},, \sum\limits_{i = 1}^n
{{i^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6}andand\sum\limits_{i = 1}^n {{i^4}} = \dfrac{{{n^2}{{(n +
1)}^2}}}{4}Andsubstituting And substituting \Rightarrow \sum\limits_{i = 1}^n {f({x_i})\Delta x} = - \dfrac{2}{n}n + \dfrac{{12}}{{{n^2}}}\left(
{\dfrac{{n(n + 1)}}{2}} \right) - \dfrac{{24}}{{{n^3}}}\left( {\dfrac{{n(n + 1)(2n + 1)}}{6}} \right) +
\dfrac{{16}}{{{n^4}}}\left( {\dfrac{{{n^2}{{(n + 1)}^2}}}{4}} \right)Nowtakenascommonandsimplify Now take n as common and simplify \Rightarrow \sum\limits_{i = 1}^n {f({x_i})\Delta x} = - 2 + 6\left( {1 + \dfrac{1}{n}} \right) - 4\left(
{\left( {1 + \dfrac{1}{n}} \right)\left( {2 + \dfrac{1}{n}} \right)} \right) + 4{\left( {1 + \dfrac{1}{n}}
\right)^2}Nowweapplylimittoaboveequationwehave Now we apply limit to above equation we have \int\limits_a^b {f(x)dx = \mathop {\lim }\limits_{n \to \infty } } \sum\limits_{i = 1}^n {f({x_i})\Delta
x} $

11x3dx=limni=1n2+6(1+1n)4((1+1n)(2+1n))+4(1+1n)2\Rightarrow \int\limits_{ - 1}^1 {{x^3}dx = \mathop {\lim }\limits_{n \to \infty } } \sum\limits_{i = 1}^n { - 2 + 6\left( {1 + \dfrac{1}{n}} \right) - 4\left( {\left( {1 + \dfrac{1}{n}} \right)\left( {2 + \dfrac{1}{n}} \right)} \right) + 4{{\left( {1 + \dfrac{1}{n}} \right)}^2}}
On applying limit we have
11x3dx=2+6(1+0)4((1+0)(2+0))+4(1+0)2\Rightarrow \int\limits_{ - 1}^1 {{x^3}dx} = - 2 + 6\left( {1 + 0} \right) - 4\left( {\left( {1 + 0} \right)\left( {2 + 0} \right)} \right) + 4{\left( {1 + 0} \right)^2}
As we know that any number divided by the infinity the answer will be zero.
On further simplification we have
11x3dx=2+68+4 11x3dx=0  \Rightarrow \int\limits_{ - 1}^1 {{x^3}dx} = - 2 + 6 - 8 + 4 \\\ \Rightarrow \int\limits_{ - 1}^1 {{x^3}dx} = 0 \\\

Hence we found the value of definite integral by the limit definition.

Therefore 11x3dx=0\int\limits_{ - 1}^1 {{x^3}dx} = 0

Note: We have two types of integrals one is definite integral and another is indefinite integral. The definite integral where the limit points of the integration are mentioned and whereas in the indefinite integral the limits points of integration is not mentioned. The formula for the integration by the limit definition is given byabf(x)dx=limni=1nf(xi)Δx\int\limits_a^b {f(x)dx = \mathop {\lim }\limits_{n \to \infty } } \sum\limits_{i = 1}^n {f({x_i})\Delta x} . This is the lengthy procedure we can obtain the solution only in two to three steps.