Solveeit Logo

Question

Question: How do you evaluate \(\tan \left( {{\cos }^{-1}}\left( -\dfrac{2}{3} \right) \right)\) without a cal...

How do you evaluate tan(cos1(23))\tan \left( {{\cos }^{-1}}\left( -\dfrac{2}{3} \right) \right) without a calculator?

Explanation

Solution

In this question we need to calculate the value of the given expression without using a calculator. We can observe that the given expression consists of two trigonometric identities out of them one is the inverse trigonometric identity. So, we will first consider the inverse trigonometric identity and try to form the triangle using basic trigonometric definitions. After that we will calculate all the sides of the triangle by using Pythagoras theorem and then we can calculate the whatever trigonometric value from the triangle.

Complete step by step solution:
Given that, tan(cos1(23))\tan \left( {{\cos }^{-1}}\left( -\dfrac{2}{3} \right) \right).
Let us assume x=cos1(23)x={{\cos }^{-1}}\left( -\dfrac{2}{3} \right).
Apply cos\cos function on both sides of the above equation, then we will get
cos(x)=cos(cos1(23)) cosx=23 \begin{aligned} & \Rightarrow \cos \left( x \right)=\cos \left( {{\cos }^{-1}}\left( -\dfrac{2}{3} \right) \right) \\\ & \Rightarrow \cos x=-\dfrac{2}{3} \\\ \end{aligned}
In the above equation we have the value of cosx\cos x as negative. So that angle xx lies in the second quadrant. We know that the value of tanx\tan x will be negative for xx in the second quadrant.
We know that the basic definition of the trigonometric ratio cosx\cos x will be
cosx=Adjacent side to xHypotenuse 23=Adjacent side to xHypotenuse \begin{aligned} & \Rightarrow \cos x=\dfrac{\text{Adjacent side to }x}{\text{Hypotenuse}} \\\ & \Rightarrow \dfrac{2}{3}=\dfrac{\text{Adjacent side to }x}{\text{Hypotenuse}} \\\ \end{aligned}
From the above equation we can assume a triangle as shown in below

From the Pythagoras theorem, in the above triangle we can write
opposite side2+22=32 opposite side2=94 opposite side=5 \begin{aligned} & \Rightarrow \text{opposite sid}{{\text{e}}^{2}}+{{2}^{2}}={{3}^{2}} \\\ & \Rightarrow \text{opposite sid}{{\text{e}}^{2}}=9-4 \\\ & \Rightarrow \text{opposite side}=\sqrt{5} \\\ \end{aligned}
Now the triangle will be

In the above triangle we can write the value of tanx\tan x as
tanx=opposite side to xadjacent side to x tanx=52 \begin{aligned} & \Rightarrow \tan x=\dfrac{\text{opposite side to }x}{\text{adjacent side to }x} \\\ & \Rightarrow \tan x=\dfrac{\sqrt{5}}{2} \\\ \end{aligned}
But the angle xx lies in the second quadrant hence the value of tanx\tan x will be
tanx=52\Rightarrow \tan x=-\dfrac{\sqrt{5}}{2}
Substituting our assumption x=cos1(23)x={{\cos }^{-1}}\left( -\dfrac{2}{3} \right) in the above equation, then we will get
tan(cos1(23))=52\Rightarrow \tan \left( {{\cos }^{-1}}\left( -\dfrac{2}{3} \right) \right)=-\dfrac{\sqrt{5}}{2}

Note: For this problem we can also directly calculate the value in another method. After getting the value cosx=23\cos x=-\dfrac{2}{3}, we will calculate the value of sinx\sin x from the trigonometric identity sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1.
sinx=1cos2x sinx=1(23)2 sinx=149 sinx=949 sinx=53 \begin{aligned} & \Rightarrow \sin x=\sqrt{1-{{\cos }^{2}}x} \\\ & \Rightarrow \sin x=\sqrt{1-{{\left( -\dfrac{2}{3} \right)}^{2}}} \\\ & \Rightarrow \sin x=\sqrt{1-\dfrac{4}{9}} \\\ & \Rightarrow \sin x=\sqrt{\dfrac{9-4}{9}} \\\ & \Rightarrow \sin x=\dfrac{\sqrt{5}}{3} \\\ \end{aligned}
From this value we can write the value of tanx\tan x as
tanx=sinxcosx tanx=5323 tanx=52 \begin{aligned} & \Rightarrow \tan x=\dfrac{\sin x}{\cos x} \\\ & \Rightarrow \tan x=\dfrac{\dfrac{\sqrt{5}}{3}}{-\dfrac{2}{3}} \\\ & \Rightarrow \tan x=-\dfrac{\sqrt{5}}{2} \\\ \end{aligned}
From both the methods we got the same result.