Solveeit Logo

Question

Question: How do you evaluate \(\tan \left( \arcsin \left( \dfrac{1}{3} \right) \right)\)?...

How do you evaluate tan(arcsin(13))\tan \left( \arcsin \left( \dfrac{1}{3} \right) \right)?

Explanation

Solution

First express the expression in terms of sine and cosine form using the formula tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x}. Then simplify the numerator and the denominator by taking them separately. For numerator use the formula sin(arcsin(x))=x\sin \left( \arcsin \left( x \right) \right)=xand for the denominator use cosx=1sin2x\cos x=\sqrt{1-{{\sin }^{2}}x} and sin2(arcsin(x))=x2{{\sin }^{2}}\left( \arcsin \left( x \right) \right)={{x}^{2}}. After getting simplified values, bring the numerator and the denominator together and do the necessary calculation to obtain the required solution.

Complete step by step solution:
As we know, tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x}
Now, considering our question tan(arcsin(13))\tan \left( \arcsin \left( \dfrac{1}{3} \right) \right)
It can be written as tan(arcsin(13))=sin(arcsin(13))cos(arcsin(13))\tan \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\dfrac{\sin \left( \arcsin \left( \dfrac{1}{3} \right) \right)}{\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)}
From here, we have to simplify the numerator part and the denominator part separately.
For the numerator part:
As we know, sin(arcsin(x))=x\sin \left( \arcsin \left( x \right) \right)=x
So, sin(arcsin(13))\sin \left( \arcsin \left( \dfrac{1}{3} \right) \right) can be written as sin(arcsin(13))=13\sin \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\dfrac{1}{3}
For the denominator part:
As we know
sin2x+cos2x=1 cos2x=1sin2x cosx=1sin2x \begin{aligned} & {{\sin }^{2}}x+{{\cos }^{2}}x=1 \\\ & \Rightarrow {{\cos }^{2}}x=1-{{\sin }^{2}}x \\\ & \Rightarrow \cos x=\sqrt{1-{{\sin }^{2}}x} \\\ \end{aligned}
So, cos(arcsin(13))\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right) can be written as cos(arcsin(13))=1sin2(arcsin(13))\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\sqrt{1-{{\sin }^{2}}\left( \arcsin \left( \dfrac{1}{3} \right) \right)}
Again, we know sin2(arcsin(x))=(x)2=x2{{\sin }^{2}}\left( \arcsin \left( x \right) \right)={{\left( x \right)}^{2}}={{x}^{2}}
So, sin2(arcsin(13))=(13)2=19{{\sin }^{2}}\left( \arcsin \left( \dfrac{1}{3} \right) \right)={{\left( \dfrac{1}{3} \right)}^{2}}=\dfrac{1}{9}
Putting the value of sin2(arcsin(13)){{\sin }^{2}}\left( \arcsin \left( \dfrac{1}{3} \right) \right)in cos(arcsin(13))=1sin2(arcsin(13))\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\sqrt{1-{{\sin }^{2}}\left( \arcsin \left( \dfrac{1}{3} \right) \right)}, we get
cos(arcsin(13))=119=919=89=223\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\sqrt{1-\dfrac{1}{9}}=\sqrt{\dfrac{9-1}{9}}=\sqrt{\dfrac{8}{9}}=\dfrac{2\sqrt{2}}{3}
Bringing the numerator and the denominator together, now our expression becomes
tan(arcsin(13))=sin(arcsin(13))cos(arcsin(13))=13223=13×322=122\tan \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\dfrac{\sin \left( \arcsin \left( \dfrac{1}{3} \right) \right)}{\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)}=\dfrac{\dfrac{1}{3}}{\dfrac{2\sqrt{2}}{3}}=\dfrac{1}{3}\times \dfrac{3}{2\sqrt{2}}=\dfrac{1}{2\sqrt{2}}
This is the required solution of the given question.

Note: We know, sin2x{{\sin }^{2}}x can be written as (sinx)2{{\left( \sin x \right)}^{2}}. Similarly we can write sin2(arcsin(x)){{\sin }^{2}}\left( \arcsin \left( x \right) \right) as [sin(arcsin(x))]2{{\left[ \sin \left( \arcsin \left( x \right) \right) \right]}^{2}}. Again as we know, the value of sin(arcsin(x))=x\sin \left( \arcsin \left( x \right) \right)=x so, the value of [sin(arcsin(x))]2=(x)2=x2{{\left[ \sin \left( \arcsin \left( x \right) \right) \right]}^{2}}={{\left( x \right)}^{2}}={{x}^{2}}, which is used in this question. The above question should be solved by taking the numerator and the denominator separately to avoid errors and complex calculations.