Solveeit Logo

Question

Question: How do you evaluate \(\tan \left( {4{{\tan }^{ - 1}}\left( {\dfrac{1}{5}} \right)} \right)\)?...

How do you evaluate tan(4tan1(15))\tan \left( {4{{\tan }^{ - 1}}\left( {\dfrac{1}{5}} \right)} \right)?

Explanation

Solution

In the given question we have to find the value of the given expression which is a trigonometric function, we will evaluate by first considering the inverse function inside as a variable, then by using the identity tan(tan1x)=x\tan \left( {{{\tan }^{ - 1}}x} \right) = x, we will get the tan value of the variable, then we will use the double angle identity i.e., tan2x=2tanx1tan2x\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}, and by substituting the values in the identity we will get the required value.

Complete step by step solution:
Given function is tan(4tan1(15))\tan \left( {4{{\tan }^{ - 1}}\left( {\dfrac{1}{5}} \right)} \right),
Let us consider a=tan115a = {\tan ^{ - 1}}\dfrac{1}{5},
Apply tan on both sides we get,
tana=tan(tan115)\Rightarrow \tan a = \tan \left( {{{\tan }^{ - 1}}\dfrac{1}{5}} \right),
Now using the identity tan(tan1x)=x\tan \left( {{{\tan }^{ - 1}}x} \right) = x, we get,
tana=15\Rightarrow \tan a = \dfrac{1}{5},
Now using double angle identity i.e., tan2x=2tanx1tan2x\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}, we get,
tan2a=2tana1tan2a\Rightarrow \tan 2a = \dfrac{{2\tan a}}{{1 - {{\tan }^2}a}},
We know that tana=15\tan a = \dfrac{1}{5}, by substituting the value in the identity, we get,
tan2a=2(15)1(15)2\Rightarrow \tan 2a = \dfrac{{2\left( {\dfrac{1}{5}} \right)}}{{1 - {{\left( {\dfrac{1}{5}} \right)}^2}}},
Now simplifying we get,
tan2a=251125\Rightarrow \tan 2a = \dfrac{{\dfrac{2}{5}}}{{1 - \dfrac{1}{{25}}}},
Now taking L.C.M in the denominator we get,
tan2a=2525125\Rightarrow \tan 2a = \dfrac{{\dfrac{2}{5}}}{{\dfrac{{25 - 1}}{{25}}}},
Again simplifying we get,
tan2a=252425\Rightarrow \tan 2a = \dfrac{{\dfrac{2}{5}}}{{\dfrac{{24}}{{25}}}},
Now further simplifying, we get,
tan2a=1125\Rightarrow \tan 2a = \dfrac{1}{{\dfrac{{12}}{5}}},
Now taking denominator of the denominator to the numerator we get,
tan2a=512\Rightarrow \tan 2a = \dfrac{5}{{12}},
Again the given expression will be, tan4a=2tan2a1tan22a\tan 4a = \dfrac{{2\tan 2a}}{{1 - {{\tan }^2}2a}}, we know that the value of tan2a=512\tan 2a = \dfrac{5}{{12}}, by substituting the value in the identity we get,
tan4a=2(512)1(512)2\Rightarrow \tan 4a = \dfrac{{2\left( {\dfrac{5}{{12}}} \right)}}{{1 - {{\left( {\dfrac{5}{{12}}} \right)}^2}}},
Now simplifying we get,
tan4a=56125144\Rightarrow \tan 4a = \dfrac{{\dfrac{5}{6}}}{{1 - \dfrac{{25}}{{144}}}},
Now taking L.C.M in the denominator we get,
tan4a=5614425144\Rightarrow \tan 4a = \dfrac{{\dfrac{5}{6}}}{{\dfrac{{144 - 25}}{{144}}}},
Now simplifying we get,
tan4a=56119144\Rightarrow \tan 4a = \dfrac{{\dfrac{5}{6}}}{{\dfrac{{119}}{{144}}}},
Now simplifying we get,
tan4a=511924\Rightarrow \tan 4a = \dfrac{5}{{\dfrac{{119}}{{24}}}},
Again simplifying we get,
tan4a=5×24119\Rightarrow \tan 4a = \dfrac{{5 \times 24}}{{119}},
Now multiplying we get,
tan4a=120119\Rightarrow \tan 4a = \dfrac{{120}}{{119}} ,
Now we know that a=tan115a = {\tan ^{ - 1}}\dfrac{1}{5}, by substituting the value in the above result we get,
tan4(tan115)=120119\Rightarrow \tan 4\left( {{{\tan }^{ - 1}}\dfrac{1}{5}} \right) = \dfrac{{120}}{{119}},
So, the value of the expression is 120119\dfrac{{120}}{{119}},

\therefore The value of the given expression which is tan(4tan1(15))\tan \left( {4{{\tan }^{ - 1}}\left( {\dfrac{1}{5}} \right)} \right) will be equal to 120119\dfrac{{120}}{{119}}.

Note: The trigonometric double angle formulas give a relationship between the basic trigonometric functions applied to twice an angle in terms of trigonometric functions of the angle itself. Some of the important formulas or identities are:
sin2x=2sinxcosx\sin 2x = 2\sin x\cos x,
cos2x=12sin2x=2cos2x1=cos2xsin2x\cos 2x = 1 - 2{\sin ^2}x = 2{\cos ^2}x - 1 = {\cos ^2}x - {\sin ^2}x,
tan2x=2tanx1tan2x\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}.