Solveeit Logo

Question

Question: How do you evaluate \(\tan (210)?\)...

How do you evaluate tan(210)?\tan (210)?

Explanation

Solution

The trigonometric function tanθ\tan \theta is defined for all real numbers θ\theta . We can write it in terms of sinθ\sin \theta and cosθ\cos \theta as sinθcosθ\dfrac{\sin \theta }{\cos \theta }, where cosθ0\cos \theta \ne 0.
The function tanθ\tan \theta is undefined for θ=...,5π2,3π2,π2,π2,3π2,5π2,...\theta =...,-\dfrac{5\pi }{2},-\dfrac{3\pi }{2},-\dfrac{\pi }{2},\dfrac{\pi }{2},\dfrac{3\pi }{2},\dfrac{5\pi }{2},...
Some properties will help to evaluate tan(210)\tan (210)
π\Rightarrow \pi (in radian)=1800={{180}^{0}}
tan(π+θ)=tanθ\Rightarrow \tan (\pi +\theta )=\tan \theta .
tan(θ)=tanθ\Rightarrow \tan (-\theta )=-\tan \theta .
\Rightarrow tan(π2θ)=cotθ\tan \left( \dfrac{\pi }{2}-\theta \right)=\cot \theta .
\Rightarrow tan(π2+θ)=tanθ\tan \left( \dfrac{\pi }{2}+\theta \right)=\tan \theta .
\Rightarrow tan(θ+φ)=tanθ+tanφ1tanθ×tanφ\tan (\theta +\varphi )=\dfrac{\tan \theta +\tan \varphi }{1-\tan \theta \times \tan \varphi }.

Complete step by step solution:
To evaluate tan(210)\tan (210) we will do two factors 210210 in terms of (π+θ)(\pi +\theta ).
Therefore, 210210 can be written as in term of (π+θ)(\pi +\theta )is (180+30)(180+30)
tan(210)=tan(π+30)\Rightarrow \tan (210)=\tan (\pi +30)
tan(π+30)=tan(30)\Rightarrow \tan (\pi +30)=\tan (30)
tan(30)\Rightarrow \tan (30)
13\Rightarrow \dfrac{1}{\sqrt{3}}
tan(210)=13\tan (210)=\dfrac{1}{\sqrt{3}}.
We can rewrite this solution 33\dfrac{\sqrt{3}}{3} by use of rationalization of the denominator as
13×33\Rightarrow \dfrac{1}{\sqrt{3}}\times \dfrac{\sqrt{3}}{\sqrt{3}}
33\Rightarrow \dfrac{\sqrt{3}}{3}.
The value of tan(210)\tan (210)both is equal

Hence the value tan(210)\tan (210) will be 13\dfrac{1}{\sqrt{3}} or 33\dfrac{\sqrt{3}}{3}.

Note: The angle 210 will be in the third quadrant.
The tangent function is undefined when the function cosine\cos ine will be zero.
The domain of the function tanθ\tan \theta is real numbers.
And the range of the function is real numbers.