Solveeit Logo

Question

Question: How do you evaluate sine, cosine, tangent of \(750^\circ\) without using a calculator?...

How do you evaluate sine, cosine, tangent of 750750^\circ without using a calculator?

Explanation

Solution

Given an angle in degrees and we have to find the sine, cosine, and tangent of a particular measure without the help of the calculator. First, we will convert the given angle between the angle of value 00 to 9090^\circ . Then, we will substitute the value of the trigonometric function for the measure of an angle. Then, compute the exact value of the required angle.
Formula used:
The reference angle for the angle θ\theta is given by:
θ+n(360)\theta + n \left( 360^\circ \right)

Complete step by step solution:
We are given the measure of an angle in degrees. First, we will find the reference angle to convert the given angle between00 to 9090^\circ .
For this, we will divide 750750^\circ by 360360^\circ .
750÷360=2.08\Rightarrow 750^\circ \div 360^\circ = 2.08
This means two cycles fit within the angle.
360×2=720\Rightarrow 360^\circ \times 2 = 720^\circ
Now, the angle which is left over 750720=30\Rightarrow 750^\circ - 720^\circ = 30^\circ
Thus, the reference angle is 3030^\circ
Therefore, the value of sine 750750^\circ is equal to sine 3030^\circ
sin750=sin30\Rightarrow \sin 750^\circ = \sin 30^\circ
Substitute the value of sin30=12\sin 30^\circ = \dfrac{1}{2}
sin750=12\Rightarrow \sin 750^\circ = \dfrac{1}{2}
sin750=0.5\Rightarrow \sin 750^\circ = 0.5
Similarly we will find the value of cosine 750750^\circ .
cos750=cos30\Rightarrow \cos 750^\circ = \cos 30^\circ
Substitute the value of cos30=32\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}
cos750=32\Rightarrow \cos 750^\circ = \dfrac{{\sqrt 3 }}{2}
Now, simplify the expression.
cos750=0.866\Rightarrow \cos 750^\circ = 0.866
Now, we will find the value of tan 750750^\circ using the trigonometric identity, tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}
tan750=sin750cos750\Rightarrow \tan 750^\circ = \dfrac{{\sin 750^\circ }}{{\cos 750^\circ }}
Now, substitute the values into the expression.
tan750=0.50.866\Rightarrow \tan 750^\circ = \dfrac{{0.5}}{{0.866}}
tan750=0.577\Rightarrow \tan 750^\circ = 0.577
Hence, the value of sine, cosine and tangent of 750750^\circ is 0.50.5, 0.8660.866 and 0.5770.577 respectively.

Note: Students must remember that we have used the trigonometric values of a particular measure of an angle. Here, the value of sin30=12\sin 30^\circ = \dfrac{1}{2} and the value of cos30=32\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}. Students may note that we will find the reference angle by dividing the given angle by 2π2\pi .