Solveeit Logo

Question

Question: How do you evaluate \(\sin \left( {\dfrac{{2\pi }}{3}} \right)\) ?...

How do you evaluate sin(2π3)\sin \left( {\dfrac{{2\pi }}{3}} \right) ?

Explanation

Solution

To evaluate this value we use the identity sinx=cos(π2x)\sin x = \cos \left( {\dfrac{\pi }{2} - x} \right) and substitute the value of x and solve using trigonometric property cos(x)=cosx\cos \left( { - x} \right) = \cos x, and also remember the trigonometric table of values 30 and 60 degrees of cosine and sine trigonometric functions.

Complete step-by-step answer:
The objective of the problem is to evaluate the value of sin(2π3)\sin \left( {\dfrac{{2\pi }}{3}} \right)
Given sin(2π3)\sin \left( {\dfrac{{2\pi }}{3}} \right)
To solve this we convert the sine trigonometric function into cosine trigonometric function by using the identity sinx=cos(π2x)\sin x = \cos \left( {\dfrac{\pi }{2} - x} \right).
Now convert sine function into cosine function using the above mentioned formula , we get
sin(2π3)=cos(π22π3)\sin \left( {\dfrac{{2\pi }}{3}} \right) = \cos \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{3}} \right)
On solving the above equation we get
cos(3π4π6)=cos(π6)\Rightarrow \cos \left( {\dfrac{{3\pi - 4\pi }}{6}} \right) = \cos \left( { - \dfrac{\pi }{6}} \right)
We know that cosine of negative value is positive cosine function. That is cos(x)=cosx\cos \left( { - x} \right) = \cos x
Now we get
cos(π6)=cos(π6)\cos \left( { - \dfrac{\pi }{6}} \right) = \cos \left( {\dfrac{\pi }{6}} \right)
The trigonometric values of sine and cosine functions are as follows

$$$$ θ\theta 00π6\dfrac{\pi }{6}π4\dfrac{\pi }{4}π3\dfrac{\pi }{3}π2\dfrac{\pi }{2}
sinθ\sin \theta 0012\dfrac{1}{2}12\dfrac{1}{{\sqrt 2 }}32\dfrac{{\sqrt 3 }}{2}11
cosθ\cos \theta 1132\dfrac{{\sqrt 3 }}{2}12\dfrac{1}{{\sqrt 2 }}12\dfrac{1}{2}00

From the above table we observed that the values of sine and cosine trigonometric functions are equal at 45 degrees that is at π4\dfrac{\pi }{4}. The value of sine function at 0 and the value of cosine function at π2\dfrac{\pi }{2} are equal. And the value of cosine at 0 and the value of sine function at π2\dfrac{\pi }{2} are equal. The value of the sine function at π6\dfrac{\pi }{6} and the value of cosine function at π3\dfrac{\pi }{3} are equal. And the value of the sine function at π3\dfrac{\pi }{3} and cosine function of π6\dfrac{\pi }{6} are equal.
Now by using trigonometric table and their values substitute the values in cos(π6)\cos \left( {\dfrac{\pi }{6}} \right)
On substituting we get
cos(π6)=32\cos \left( {\dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 3 }}{2}.
Therefore, the value of sinx=cos(π2x)\sin x = \cos \left( {\dfrac{\pi }{2} - x} \right) is 32\dfrac{{\sqrt 3 }}{2}.
Thus , on evaluating sin(2π3)\sin \left( {\dfrac{{2\pi }}{3}} \right) the value is 32\dfrac{{\sqrt 3 }}{2}.

Note: (π2x)\left( {\dfrac{\pi }{2} - x} \right) is called trigonometric functions of complementary angles. The sine of an angle θ\theta is the cosine of its complementary angle. The cosine of an angle θ\theta is the same as the sine of its complementary angle. Similarly we can pair the secant with cosecant and tangent with cotangent.