Solveeit Logo

Question

Question: How do you evaluate \(\sin \left( \dfrac{11\pi }{2} \right)\) ?...

How do you evaluate sin(11π2)\sin \left( \dfrac{11\pi }{2} \right) ?

Explanation

Solution

Try to expand sin(11π2)\sin \left( \dfrac{11\pi }{2} \right) and express it in the values that we already know the sin and cos of as, 11π2=5π+π2\dfrac{11\pi }{2}=5\pi +\dfrac{\pi }{2} . Then use the trigonometric identity sin(a+b)=sinacosb+sinbcosa\sin (a+b)=\sin a\cos b+\sin b\cos a to express sin(11π2)\sin \left( \dfrac{11\pi }{2} \right) as sin(5π+π2)\sin \left( 5\pi +\dfrac{\pi }{2} \right) . Here, a is 5π5\pi and b is π2\dfrac{\pi }{2} .

Complete step by step answer:
This type of question is mainly asked to check whether one remembers the formula sin(a+b)=sinacosb+sinbcosa\sin (a+b)=\sin a\cos b+\sin b\cos a and the values of sin and cos at π2\dfrac{\pi }{2} and nπn\pi .
We know, sin(nπ)\sin (n\pi ) is 0 for all n belonging to integers, sin((4n+1)π2)\sin \left( \dfrac{(4n+1)\pi }{2} \right) is 1 for all n belonging to integers, cos((2n+1)π2)\cos \left( \dfrac{\left( 2n+1 \right)\pi }{2} \right) is 0 for all n belonging to integers and cos((2n+1)π)\cos \left( \left( 2n+1 \right)\pi \right) is -1 for all n belonging to integers.
We know, 11π2=10π+π2\dfrac{11\pi }{2}=\dfrac{10\pi +\pi }{2}
11π2=10π2+π2\Rightarrow \dfrac{11\pi }{2}=\dfrac{10\pi }{2}+\dfrac{\pi }{2}
Since 10 is divisible by 2 and when dividing 10 by 2 we get 5,
10π2+π2=5π+π2\Rightarrow \dfrac{10\pi }{2}+\dfrac{\pi }{2}=5\pi +\dfrac{\pi }{2}
Thus, sin(11π2)=sin(5π+π2)\sin \left( \dfrac{11\pi }{2} \right)=\sin \left( 5\pi +\dfrac{\pi }{2} \right)
Now, taking a as 5π5\pi and b as π2\dfrac{\pi }{2} and applying it in the formula of sin(a+b)=sinacosb+sinbcosa\sin (a+b)=\sin a\cos b+\sin b\cos a we have,
sin(5π+π2)=sin(5π)cos(π2)+cos(5π)sin(π2)\sin \left( 5\pi +\dfrac{\pi }{2} \right)=\sin \left( 5\pi \right)\cos \left( \dfrac{\pi }{2} \right)+\cos \left( 5\pi \right)\sin \left( \dfrac{\pi }{2} \right) .
sin(5π)\sin \left( 5\pi \right) is of the form sin(nπ)\sin \left( n\pi \right) so equal to 0 , sin(π2)\sin \left( \dfrac{\pi }{2} \right) is of the form sin((4n+1)π2)\sin \left( \dfrac{(4n+1)\pi }{2} \right) so equal to 1 , cos(5π)\cos \left( 5\pi \right) is of the form cos((2n+1)π)\cos \left( \left( 2n+1 \right)\pi \right) so equal to -1 and cos(π2)\cos \left( \dfrac{\pi }{2} \right) is of the form cos((2n+1)π2)\cos \left( \dfrac{\left( 2n+1 \right)\pi }{2} \right) so equal to 0.
sin(5π)cos(π2)+cos(5π)sin(π2)=0×0+(1)×(1)\Rightarrow \sin \left( 5\pi \right)\cos \left( \dfrac{\pi }{2} \right)+\cos \left( 5\pi \right)\sin \left( \dfrac{\pi }{2} \right)=0\times 0+\left( -1 \right)\times \left( 1 \right)

Thus, sin(11π2)=1\sin \left( \dfrac{11\pi }{2} \right)=-1

Note: One must remember the basic values of sin and cos, it is very common to make mistakes in the signs for +1 and -1 when using the values of sin and cos. Another common mistake is to make sign mistakes in the sin(a+b)sin\left( a+b \right) formula.
Alternatively, one can directly see that 11π2\dfrac{11\pi }{2} directly is of the form sin((4n+3)π2)\sin \left( \dfrac{\left( 4n+3 \right)\pi }{2} \right) and thus it would be equal to -1.
You can also look at the graph and to see the value.