Solveeit Logo

Question

Question: How do you evaluate \({\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{6}} \right)\)?...

How do you evaluate sin1(sin5π6){\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{6}} \right)?

Explanation

Solution

In this question we have to find the value of the given function which is a trigonometric function, we will make use of inverse trigonometric formulas, first as the given angle will not be range of sin which is [π2,π2]\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right], so write the angle 5π5\pi as the difference of two angles as 6ππ6\pi - \pi , and the angle becomes ππ6\pi - \dfrac{\pi }{6}, and now using the fact sin(πθ)=sinθ\sin \left( {\pi - \theta } \right) = \sin \theta simplify the expression, and then by using the fact sin1(sinx)=x{\sin ^{ - 1}}\left( {\sin x} \right) = xwe will get the required result.

Complete step by step solution:
Given function is sin1(sin5π6){\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{6}} \right),
First as the given angle 5π6\dfrac{{5\pi }}{6} is not in the range of sin which is [π2,π2]\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right], we will write the angle as the difference of two angles, by writing we get,
sin1(sin5π6)=sin1(sin6ππ6)\Rightarrow {\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{6}} \right) = {\sin ^{ - 1}}\left( {\sin \dfrac{{6\pi - \pi }}{6}} \right),
Now simplifying the expression we get,
sin1(sin5π6)=sin1(sin(6π6π6))\Rightarrow {\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{6}} \right) = {\sin ^{ - 1}}\left( {\sin \left( {\dfrac{{6\pi }}{6} - \dfrac{\pi }{6}} \right)} \right),
Now again simplifying by eliminating the like terms, we get,
sin1(sin5π6)=sin1(sin(ππ6))\Rightarrow {\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{6}} \right) = {\sin ^{ - 1}}\left( {\sin \left( {\pi - \dfrac{\pi }{6}} \right)} \right),
Now using the trigonometric equality fact that is sin(πθ)=sinθ\sin \left( {\pi - \theta } \right) = \sin \theta , we get,
sin1(sin5π6)=sin1(sinπ6)\Rightarrow {\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{6}} \right) = {\sin ^{ - 1}}\left( {\sin \dfrac{\pi }{6}} \right),
Now using the inverse trigonometric formula of sine i.e., sin1(sinx)=x{\sin ^{ - 1}}\left( {\sin x} \right) = x,
Here x=π6x = \dfrac{\pi }{6}, by substituting the value we get,
sin1(sin5π6)=π6\Rightarrow {\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{6}} \right) = \dfrac{\pi }{6},
So, the value of the given function is π6\dfrac{\pi }{6}.

\therefore The value of the given trigonometric function sin1(sin5π6){\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{6}} \right) will be equal to π6\dfrac{\pi }{6}.

Note: The inverse trigonometric functions are used to find the unknown measure of an angle of a right triangle when two side lengths are known. Basic inverse trigonometric functions are sin1x{\sin ^{ - 1}}x, cos1x{\cos ^{ - 1}}x and tan1x{\tan ^{ - 1}}x.Specifically, they are the inverses of the sine, cosine, tangent. Some important formulas related to Inverse trigonometry are given below:
sin1(sinx)=x{\sin ^{ - 1}}\left( {\sin x} \right) = x,
cos1(cosx)=x{\cos ^{ - 1}}\left( {\cos x} \right) = x,
tan1(tanx)=x{\tan ^{ - 1}}\left( {\tan x} \right) = x,
sec1(secx)=x{\sec ^{ - 1}}\left( {\sec x} \right) = x,
csc1(cscx)=x{\csc ^{ - 1}}\left( {\csc x} \right) = x,
cot1(cotx)=x{\cot ^{ - 1}}\left( {\cot x} \right) = x,
sin1x=csc11x{\sin ^{ - 1}}x = {\csc ^{ - 1}}\dfrac{1}{x},
cos1x=sec11x{\cos ^{ - 1}}x = {\sec ^{ - 1}}\dfrac{1}{x},
tan1x=cot11x{\tan ^{ - 1}}x = {\cot ^{ - 1}}\dfrac{1}{x},
sin1x=cos11x2=tan1(x1x2){\sin ^{ - 1}}x = {\cos ^{ - 1}}\sqrt {1 - {x^2}} = {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {1 - {x^2}} }}} \right),
cos1x=sin11x2=tan1(1x2x){\cos ^{ - 1}}x = {\sin ^{ - 1}}\sqrt {1 - {x^2}} = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 - {x^2}} }}{x}} \right),
tan1x=sin1(x1+x2)=cos1(11+x2){\tan ^{ - 1}}x = {\sin ^{ - 1}}\left( {\dfrac{x}{{\sqrt {1 + {x^2}} }}} \right) = {\cos ^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right).