Solveeit Logo

Question

Question: How do you evaluate \({{\sin }^{-1}}\left( \dfrac{1}{2} \right)\) without a calculator?...

How do you evaluate sin1(12){{\sin }^{-1}}\left( \dfrac{1}{2} \right) without a calculator?

Explanation

Solution

We use the basic trigonometric identities to find the value of sin1(12){{\sin }^{-1}}\left( \dfrac{1}{2} \right) without a calculator. We use the fact that sinπ6=12.\sin \dfrac{\pi }{6}=\dfrac{1}{2}. Also we use the fact that if sinx=y,x[π2,π2],\sin x=y,\,x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right], then x=sin1y,y1.x={{\sin }^{-1}}y,\,\left| y \right|\le 1. The converse is also true. Besides, we know that sin30=12.\sin 30{}^\circ =\dfrac{1}{2}. We convert the value in degree measure to the value in radian measure.

Complete step by step solution:
Consider the given trigonometric function sin1(12).{{\sin }^{-1}}\left( \dfrac{1}{2} \right).
We can find the value of this trigonometric function easily by using x=sinyx=\sin y implies that sin1x=y.{{\sin }^{-1}}x=y.
The converse of the above identity is also true, sin1x=y{{\sin }^{-1}}x=y implies that x=siny.x=\sin y.
Let us suppose that x=sin1(12).x={{\sin }^{-1}}\left( \dfrac{1}{2} \right).
Also, we know that 121.\dfrac{1}{2}\le 1.
Now, from above, we can write sinx=12.\sin x=\dfrac{1}{2}.
In addition to this, we get x[π2,π2].x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right].
Now we have to find the value of xx in the interval [π2,π2]\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right] for which the above supposition and also sinx=12\sin x=\dfrac{1}{2} are true.
And we have the sine value sin30=12.\sin 30{}^\circ =\dfrac{1}{2}.
Now, what we have to do is to find the radian value corresponding to 30.30{}^\circ .
Since 1=(π180)c,1\,{}^\circ ={{\left( \dfrac{\pi }{180} \right)}^{c}}, 30=30×(π180)c.30\,{}^\circ =30\times {{\left( \dfrac{\pi }{180} \right)}^{c}}.
Since 3030 divides 180180 to give 60,60, we get 30=(π60)c.30{}^\circ ={{\left( \dfrac{\pi }{60} \right)}^{c}}.
That means the value of xx in radian measure for which sinx=12\sin x=\dfrac{1}{2} is π6.\dfrac{\pi }{6}.
In other words, sinπ6=12.\sin \dfrac{\pi }{6}=\dfrac{1}{2}.
And we know that the value π6\dfrac{\pi }{6} belongs to the required interval [π6,π6].\left[ \dfrac{-\pi }{6},\dfrac{\pi }{6} \right].
So, using the above given identity sinx=y,x[π2,π2],\sin x=y,\,x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right], then x=sin1y,y1.x={{\sin }^{-1}}y,\,\left| y \right|\le 1.
We have now obtained the value of xx which satisfies the condition given above.
Therefore, sin112=π6.{{\sin }^{-1}}\dfrac{1}{2}=\dfrac{\pi }{6}.

Note: Let us recall how we convert a value from degree measure to radian measure.
A circle subtends an angle at the centre. Radian measure of this angle is 2π2\pi and its degree measure is 360.360{}^\circ .
So, we get 2πc=360.2{{\pi }^{c}}=360{}^\circ .
This implies that πc=3602=180.{{\pi }^{c}}=\dfrac{360}{2}=180{}^\circ .
Therefore, 1=(π180)c.1{}^\circ ={{\left( \dfrac{\pi }{180} \right)}^{c}}.
So, 30=30×(π180)c.30{}^\circ =30\times {{\left( \dfrac{\pi }{180} \right)}^{c}}.
Hence, 30=(π6)c,30{}^\circ ={{\left( \dfrac{\pi }{6} \right)}^{c}}, and so on.