Solveeit Logo

Question

Question: How do you evaluate \(\sec \left( {\dfrac{\pi }{9}} \right)\) ?...

How do you evaluate sec(π9)\sec \left( {\dfrac{\pi }{9}} \right) ?

Explanation

Solution

Since secθ\sec \theta is 1cosθ\dfrac{1}{{\cos \theta }} solving the given trigonometric quantity using cosθ\cos \theta would be easier. Write sec(π9)\sec \left( {\dfrac{\pi }{9}} \right) in terms of cos(π3)\cos \left( {\dfrac{\pi }{3}} \right) and substitute it in the cos(3θ)\cos (3\theta ) formula to get an equation of degree 33. Solve it to get the values of cosθ\cos \theta which should later be converted into secθ\sec \theta for the final answer.

Formula used:
cos(3θ)=4cos3θ3cosθ\cos (3\theta ) = 4{\cos ^3}\theta - 3\cos \theta

Complete step-by-step answer:
Given trigonometric expression, sec(π9)\sec \left( {\dfrac{\pi }{9}} \right)
Consider, cos(π3)\cos \left( {\dfrac{\pi }{3}} \right) whose value is 12\dfrac{1}{2}
Multiply 33 on the numerator and denominator of the cosθ\cos \theta .
cos(3π3×3)=12\Rightarrow \cos \left( {\dfrac{{3\pi }}{{3 \times 3}}} \right) = \dfrac{1}{2}
cos(3π9)=12\Rightarrow \cos \left( {\dfrac{{3\pi }}{9}} \right) = \dfrac{1}{2}
Consider θ=π9\theta = \dfrac{\pi }{9}, then
cos(3θ)=12\Rightarrow \cos (3\theta ) = \dfrac{1}{2}
The formula for cos(3θ)\cos (3\theta ) is,
\Rightarrow cos(3θ)=4cos3θ3cosθ\cos (3\theta ) = 4{\cos ^3}\theta - 3\cos \theta
4cos3θ3cosθ=12\Rightarrow 4{\cos ^3}\theta - 3\cos \theta = \dfrac{1}{2}
Now put cosθ=x\cos \theta = x for easy evaluation of the polynomial of degree 33
4x33x=12\Rightarrow 4{x^3} - 3x = \dfrac{1}{2}
Take the 12\dfrac{1}{2}onto the L.H.S
4x33x12=0\Rightarrow 4{x^3} - 3x - \dfrac{1}{2} = 0
Multiply the whole equation with 22
8x36x1=0\Rightarrow 8{x^3} - 6x - 1 = 0
Solving this equation results in 33 roots since it is a polynomial of degree 33
By using a scientific calculator,
We get the roots as,
x1=0.93969;x2=0.76604;x3=0.17364\Rightarrow {x_1} = 0.93969;{x_2} = - 0.76604;{x_3} = - 0.17364
Since the angle is <90< 90^\circ and cosθ\cos \theta is positive in that region so we consider the positive value only.
cosθ\cos \theta is positive in the first and fourth quadrant.
cosθ=0.93969\Rightarrow \cos \theta = 0.93969
But θ=π9\theta = \dfrac{\pi }{9}
cos(π9)=0.93969\Rightarrow \cos \left( {\dfrac{\pi }{9}} \right) = 0.93969
Since,secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }}
sec(π9)=1cos(π9)\Rightarrow \sec \left( {\dfrac{\pi }{9}} \right) = \dfrac{1}{{\cos \left( {\dfrac{\pi }{9}} \right)}}
From the above evaluation, we know that,cos(π9)=0.93969\cos \left( {\dfrac{\pi }{9}} \right) = 0.93969
sec(π9)=10.93969\Rightarrow \sec \left( {\dfrac{\pi }{9}} \right) = \dfrac{1}{{0.93969}}
On evaluating We get,
sec(π9)=10.93969=1.0641\Rightarrow \sec \left( {\dfrac{\pi }{9}} \right) = \dfrac{1}{{0.93969}} = 1.0641

sec(π9)=1.0641\therefore \sec \left( {\dfrac{\pi }{9}} \right) = 1.0641

Additional information: Whenever complex equations are given to solve one must always Firstly start from the complex side and then convert all the terms into cosθ\cos \theta or sinθ\sin \theta . Then combine them into single fractions. Now it’s most likely to use Trigonometric identities for the transformations if there are any. Know when and where to apply the Subtraction-Addition formula.

Note:
Always check when the trigonometric functions are given in degrees or radians. 1×π180=0.017Rad1^\circ \times \dfrac{\pi }{{180}} = 0.017Rad. Express everything in sinθ\sin \theta or cosθ\cos \theta to easily evaluate. Always check where both the trigonometric functions become negative or positive. Most of the problems can easily be solved by memorizing Quotient identities and Subtraction-Addition identities.