Solveeit Logo

Question

Question: How do you evaluate \( \int{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^...

How do you evaluate (xarctanx)dx(1+x2)2 \int{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}} from 0 to infinity ?

Explanation

Solution

We can solve the given integral by first using the derivative of substitution method, where you can substitute x with tan(y) . Then you can use integration by parts to solve the integral and get the final answer.

Complete step by step solution:
According to the problem, we are asked to find the integral 0 to infinity of the equation 0(xarctanx)dx(1+x2)2 \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}} that is

0(xarctanx)dx(1+x2)2 \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}--- ( 1 )

Therefore, by using the substitution, where we substitute x with tan(y), we get
x=tanyx=\tan y arctanx=y \Rightarrow \arctan x=y ---- (2)

dx=sec2y \therefore dx={{\sec }^{2}}y---- (3)
Limits also change when we substitute x=tany x=\tan y. For lower limit, if , x=0x=0,we get y=0y=0. For upper limit if x=x=\infty, we get y=π2 y=\dfrac{\pi }{2}

Using the equation 2 and equation 3, if we substitute them in equation 1, we get:
0(xarctanx)dx(1+x2)2=0π2y.tany.sec2y(1+tan2y)2dy  \begin{aligned} & \Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{y.\tan y.{{\sec }^{2}}y}{{{\left( 1+{{\tan }^{2}}y \right)}^{2}}}}dy \\\ & \\\ \end{aligned}

Here, we can now substitute 1+tan2x=sec2 1+{{\tan }^{2}}x={{\sec }^{2}} in the above equation.

0(xarctanx)dx(1+x2)2=0π2y.tany.sec2ysec4ydy   \begin{aligned} & \Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{y.\tan y.{{\sec }^{2}}y}{{{\sec }^{4}}y}}dy \\\ & \\\ \end{aligned}

Now, we can substitute tanx=sinxcosx \tan x=\dfrac{\sin x}{\cos x} in the above equation.

0(xarctanx)dx(1+x2)2=0π2y.sinycosysec2ydy \Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{y.\dfrac{\sin y}{\cos y}}{{{\sec }^{2}}y}}dy

0(xarctanx)dx(1+x2)2=0π2y.siny.cosydy \Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\int\limits_{0}^{\dfrac{\pi }{2}}{y.\sin y.\cos y}dy

But since, sin2a=2sinacosa \sin 2a=2\sin a\cos a, we get:

0(xarctanx)dx(1+x2)2=120π2y.sin2ydy \Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{y.\sin 2y}dy

Now we apply the integration by parts to solve equation 4. Therefore, we get,
\Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\dfrac{1}{2}\left\\{ \left[ y.\left( \dfrac{-\cos 2y}{2} \right) \right]_{0}^{\dfrac{\pi }{2}}+\int\limits_{0}^{\dfrac{\pi }{2}}{1.\dfrac{\cos 2y}{2}}dy \right\\}

Since the integral of sinx is -cosx and the derivative of x is 1.
\Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\dfrac{1}{4}\left\\{ \left[ \dfrac{-\pi .1}{2} \right]+\left[ \dfrac{\sin 2t}{2} \right]_{0}^{\dfrac{\pi }{2}} \right\\}

0(xarctanx)dx(1+x2)2=π8+14[0] \Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\dfrac{\pi }{8}+\dfrac{1}{4}\left[ 0 \right]

0(xarctanx)dx(1+x2)2=π8 \Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\dfrac{\pi }{8} ---- Final answer

So, we have found the derivative of the given equation 0(xarctanx)dx(1+x2)2 \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}} as 0(xarctanx)dx(1+x2)2=π8 \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\dfrac{\pi }{8}.

Therefore, the solution of the given equation 0(xarctanx)dx(1+x2)2 \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}} is 0(xarctanx)dx(1+x2)2=π8 \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\dfrac{\pi }{8}.

Note: In this problem we should be careful while using substitutions like x = tant. You should be careful to change the dx and also the upper and lower limits. Also, remember the formulas for integration by parts and smaller integrals.