Question
Question: How do you evaluate \( \int{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^...
How do you evaluate ∫(x⋅arctanx)(1+x2)2dx from 0 to infinity ?
Solution
We can solve the given integral by first using the derivative of substitution method, where you can substitute x with tan(y) . Then you can use integration by parts to solve the integral and get the final answer.
Complete step by step solution:
According to the problem, we are asked to find the integral 0 to infinity of the equation 0∫∞(x⋅arctanx)(1+x2)2dx that is
0∫∞(x⋅arctanx)(1+x2)2dx--- ( 1 )
Therefore, by using the substitution, where we substitute x with tan(y), we get
x=tany ⇒arctanx=y ---- (2)
∴dx=sec2y---- (3)
Limits also change when we substitute x=tany. For lower limit, if , x=0,we get y=0. For upper limit if x=∞, we get y=2π
Using the equation 2 and equation 3, if we substitute them in equation 1, we get:
⇒0∫∞(x⋅arctanx)(1+x2)2dx=0∫2π(1+tan2y)2y.tany.sec2ydy
Here, we can now substitute 1+tan2x=sec2 in the above equation.
⇒0∫∞(x⋅arctanx)(1+x2)2dx=0∫2πsec4yy.tany.sec2ydy
Now, we can substitute tanx=cosxsinx in the above equation.
⇒0∫∞(x⋅arctanx)(1+x2)2dx=0∫2πsec2yy.cosysinydy
⇒0∫∞(x⋅arctanx)(1+x2)2dx=0∫2πy.siny.cosydy
But since, sin2a=2sinacosa, we get:
⇒0∫∞(x⋅arctanx)(1+x2)2dx=210∫2πy.sin2ydy
Now we apply the integration by parts to solve equation 4. Therefore, we get,
\Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\dfrac{1}{2}\left\\{ \left[ y.\left( \dfrac{-\cos 2y}{2} \right) \right]_{0}^{\dfrac{\pi }{2}}+\int\limits_{0}^{\dfrac{\pi }{2}}{1.\dfrac{\cos 2y}{2}}dy \right\\}
Since the integral of sinx is -cosx and the derivative of x is 1.
\Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\dfrac{1}{4}\left\\{ \left[ \dfrac{-\pi .1}{2} \right]+\left[ \dfrac{\sin 2t}{2} \right]_{0}^{\dfrac{\pi }{2}} \right\\}
⇒0∫∞(x⋅arctanx)(1+x2)2dx=8π+41[0]
⇒0∫∞(x⋅arctanx)(1+x2)2dx=8π ---- Final answer
So, we have found the derivative of the given equation 0∫∞(x⋅arctanx)(1+x2)2dx as 0∫∞(x⋅arctanx)(1+x2)2dx=8π.
Therefore, the solution of the given equation 0∫∞(x⋅arctanx)(1+x2)2dx is 0∫∞(x⋅arctanx)(1+x2)2dx=8π.
Note: In this problem we should be careful while using substitutions like x = tant. You should be careful to change the dx and also the upper and lower limits. Also, remember the formulas for integration by parts and smaller integrals.