Solveeit Logo

Question

Question: How do you evaluate \(\int{\left[ \dfrac{x}{\sqrt{2x-1}} \right]}dx\) for [1, 5]?...

How do you evaluate [x2x1]dx\int{\left[ \dfrac{x}{\sqrt{2x-1}} \right]}dx for [1, 5]?

Explanation

Solution

In this question, we have to find the value of definite integral. Thus, we will use the integration and the basic mathematical rules to get the solution. First, we will apply the substitution method in the denominator that is let 2x1=t22x-1={{t}^{2}} . Then, we will differentiate both the sides with respect to dx and dt. After that, we will substitute the value in the integral and thus make the necessary calculations. Then, we will substitute the value of t in the equation and after that we will apply the integral formula abf(x)dx=f(b)f(a)\int\limits_{a}^{b}{f(x)dx=f(b)-f(a)} and make the necessary mathematical calculations, to get the required solution for the problem.

Complete step by step solution:
According to the question, we have to find the value of definite integral.
Thus, we will use the integration and the basic mathematical rules to get the solution.
The integral to be solved is [x2x1]dx\int{\left[ \dfrac{x}{\sqrt{2x-1}} \right]}dx for [1, 5] -------------- (1)
First, we will use the substitution method, that is let 2x1=t22x-1={{t}^{2}} -------- (2)
Now, we will differentiate equation (2), which is
(2x1)=(t2)\Rightarrow {{\left( 2x-1 \right)}^{\prime }}={{\left( {{t}^{2}} \right)}^{\prime }}
On solving the above equation, we get
2dx=2tdt\Rightarrow 2dx=2tdt
Now, we will divide 2 on both sides in the above equation, we get
22dx=2t2dt\Rightarrow \dfrac{2}{2}dx=\dfrac{2t}{2}dt
Therefore, we get
dx=tdt\Rightarrow dx=tdt ---------- (3)
Now, we will find equation (2) in terms of x that is we will add 1 on both sides in the equation (2), we get
2x1+1=t2+1\Rightarrow 2x-1+1={{t}^{2}}+1
As we now, the same terms with opposite signs cancel out each other, thus we get
2x=t2+1\Rightarrow 2x={{t}^{2}}+1
Now, we will divide 2 on both sides in the above equation, we get
22x=t2+12\Rightarrow \dfrac{2}{2}x=\dfrac{{{t}^{2}}+1}{2}
On furthers solving, we get
x=t22+12\Rightarrow x=\dfrac{{{t}^{2}}}{2}+\dfrac{1}{2} ------------ (4)
Also, we will find the value of t from equation (2) that is we will take the square root on both sides in the above equation, we get
2x1=t2\Rightarrow \sqrt{2x-1}=\sqrt{{{t}^{2}}}
Thus, we get
2x1=t\Rightarrow \sqrt{2x-1}=t ------- (5)
Now, the integral we need to evaluate is 15[x2x1]dx\int\limits_{1}^{5}{\left[ \dfrac{x}{\sqrt{2x-1}} \right]}dx
So, now we will put the value of equation (2), (3), and (4) in the above equation, we get
[t22+12t2]t.dt\Rightarrow \int\limits_{{}}^{{}}{\left[ \dfrac{\dfrac{{{t}^{2}}}{2}+\dfrac{1}{2}}{\sqrt{{{t}^{2}}}} \right]}t.dt
On further simplification, we get
t22+12dt\Rightarrow \int\limits_{{}}^{{}}{\dfrac{{{t}^{2}}}{2}+\dfrac{1}{2}}dt
Now, we will split the terms with respect to addition, we get
t22dt+12dt\Rightarrow \int\limits_{{}}^{{}}{\dfrac{{{t}^{2}}}{2}}dt+\int\limits_{{}}^{{}}{\dfrac{1}{2}}dt
So, we will apply the integration formula xndx=xn+1n+1\int{{{x}^{n}}dx=}\dfrac{{{x}^{n+1}}}{n+1} in the above equation, we get
t2+12.(3)+12t\Rightarrow \dfrac{{{t}^{2+1}}}{2.(3)}+\dfrac{1}{2}t
Therefore, we get
t36+12t\Rightarrow \dfrac{{{t}^{3}}}{6}+\dfrac{1}{2}t
Now, we will put the value of equation (5) in the above equation, we get
[(2x1)36+122x1]15\Rightarrow \left[ \dfrac{{{\left( \sqrt{2x-1} \right)}^{3}}}{6}+\dfrac{1}{2}\sqrt{2x-1} \right]_{1}^{5}
So, now we will apply the definite integral formula abf(x)dx=f(b)f(a)\int\limits_{a}^{b}{f(x)dx=f(b)-f(a)} in the above equation, we get
((2(5)1)36+122(5)1)((2(1)1)36+122(1)1)\Rightarrow \left( \dfrac{{{\left( \sqrt{2\left( 5 \right)-1} \right)}^{3}}}{6}+\dfrac{1}{2}\sqrt{2\left( 5 \right)-1} \right)-\left( \dfrac{{{\left( \sqrt{2\left( 1 \right)-1} \right)}^{3}}}{6}+\dfrac{1}{2}\sqrt{2\left( 1 \right)-1} \right)
On further simplification, we get
((101)36+12101)((21)36+1221)\Rightarrow \left( \dfrac{{{\left( \sqrt{10-1} \right)}^{3}}}{6}+\dfrac{1}{2}\sqrt{10-1} \right)-\left( \dfrac{{{\left( \sqrt{2-1} \right)}^{3}}}{6}+\dfrac{1}{2}\sqrt{2-1} \right)
((9)36+129)((1)36+121)\Rightarrow \left( \dfrac{{{\left( \sqrt{9} \right)}^{3}}}{6}+\dfrac{1}{2}\sqrt{9} \right)-\left( \dfrac{{{\left( \sqrt{1} \right)}^{3}}}{6}+\dfrac{1}{2}\sqrt{1} \right)
(996+32)(16+12)\Rightarrow \left( \dfrac{9\sqrt{9}}{6}+\dfrac{3}{2} \right)-\left( \dfrac{1}{6}+\dfrac{1}{2} \right)
On solving the above equation, we get
(392+32)(16+12)\Rightarrow \left( \dfrac{3\sqrt{9}}{2}+\dfrac{3}{2} \right)-\left( \dfrac{1}{6}+\dfrac{1}{2} \right)
Now, we will take the LCM of denominator in the above equation, we get
(39+32)(1+36)\Rightarrow \left( \dfrac{3\sqrt{9}+3}{2} \right)-\left( \dfrac{1+3}{6} \right)
(3(9+1)2)(46)\Rightarrow \left( \dfrac{3\left( \sqrt{9}+1 \right)}{2} \right)-\left( \dfrac{4}{6} \right)
Thus, we get
(3(9+1)2)23\Rightarrow \left( \dfrac{3\left( \sqrt{9}+1 \right)}{2} \right)-\dfrac{2}{3}
Now, we will again take the LCM of denominator in the above equation, we get
9(9+1)46\Rightarrow \dfrac{9\left( \sqrt{9}+1 \right)-4}{6} which is the required answer.
Therefore, for the integral [x2x1]dx\int{\left[ \dfrac{x}{\sqrt{2x-1}} \right]}dx for [1, 5] , the value is equal to 9(9+1)46\dfrac{9\left( \sqrt{9}+1 \right)-4}{6}

Note: While solving this problem, do mention all the steps properly to avoid confusion and mathematical error. One of the alternative methods to solve this problem is find the limits of t from the substitution equation and then put it in t36+12t\dfrac{{{t}^{3}}}{6}+\dfrac{1}{2}t step, to get the required solution for the problem.