Question
Question: How do you evaluate \[\int{{{e}^{6x}}\sin \left( {{e}^{2x}} \right)dx}\] using substitution and tabu...
How do you evaluate ∫e6xsin(e2x)dx using substitution and tabular integration?
Explanation
Solution
In this problem, we have to evaluate the given integral using the substitution and the integration integral. Here we can assume t=e2x and substitute it in the given integral. We can then use the integration by parts formula and integrate in steps, we can then substitute the t value in the final answer to get the result.
Complete step by step solution:
We know that the given integral expression is,
∫e6xsin(e2x)dx
We can now assume,
Let t=e2x