Solveeit Logo

Question

Question: How do you evaluate \(\int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} \)?...

How do you evaluate arctan(x)xdx\int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} ?

Explanation

Solution

We can use Integration by substitution to solve this integral. So, first substitute u=xu = \sqrt x and find its differentiation with respect to xx using differentiation properties. Then substitute the value of xx and value of dxdx in the given integral. Next, integrate using integration properties. Finally, substitute the value of uu, and get the desired result.

Formula used: The differentiation of the product of a constant and a function = the constant ×\times differentiation of the function.
i.e., ddx(kf(x))=kddx(f(x))\dfrac{d}{{dx}}\left( {kf\left( x \right)} \right) = k\dfrac{d}{{dx}}\left( {f\left( x \right)} \right), where kk is a constant.
Differentiation formula: dxndx=nxn1,n1\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}},n \ne - 1
The integral of the product of a constant and a function = the constant ×\times integral of the function.
i.e., (kf(x)dx)=kf(x)dx\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} , where kk is a constant.
The integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., [f(x)±g(x)]dx=f(x)dx±g(x)dx\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx}
Integration formula: tan1xdx=xtan1x12ln(1+x2)+C\int {{{\tan }^{ - 1}}xdx} = x{\tan ^{ - 1}}x - \dfrac{1}{2}\ln \left( {1 + {x^2}} \right) + C

Complete step-by-step solution:
We have to find arctan(x)xdx\int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} ...............…(i)
We will use Integration by substitution to solve this integral.
So, for the integral involving the rootx\sqrt x , we use the substitution:
u=xu = \sqrt x ...............…(ii)
Now, we have to differentiate uu with respect to xx.
So, differentiating uu with respect to xx, we get
dudx=ddx(x)\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {\sqrt x } \right)...............…(iii)
Now, using the differentiation formula dxndx=nxn1,n1\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}},n \ne - 1 in above differentiation and find the value of dxdx.
dudx=12x\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{2\sqrt x }}
dx=2xdu\Rightarrow dx = 2\sqrt x du...............…(iv)
Now, we have to substitute the value of x\sqrt x from (ii) and the value of dxdx from (iv) in integral (i).
arctan(x)xdx=arctan(u)x×2xdu\int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = \int {\dfrac{{\arctan \left( u \right)}}{{\sqrt x }} \times 2\sqrt x du}
arctan(x)xdx=arctan(u)×2du\Rightarrow \int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = \int {\arctan \left( u \right) \times 2du}...............…(v)
Now, using the property that the integral of the product of a constant and a function = the constant ×\times integral of the function.
i.e., (kf(x)dx)=kf(x)dx\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} , where kk is a constant.
So, in above integral (v), constant 22 can be taken outside the integral.
arctan(x)xdx=2arctan(u)du\Rightarrow \int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = 2\int {\arctan \left( u \right)du}..............…(vi)
Now, using the integration formula tan1xdx=xtan1x12ln(1+x2)+C\int {{{\tan }^{ - 1}}xdx} = x{\tan ^{ - 1}}x - \dfrac{1}{2}\ln \left( {1 + {x^2}} \right) + C in integral (vi), we get
arctan(x)xdx=2[uarctan(u)12ln(1+u2)]+C\Rightarrow \int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = 2\left[ {u\arctan \left( u \right) - \dfrac{1}{2}\ln \left( {1 + {u^2}} \right)} \right] + C
arctan(x)xdx=2uarctan(u)ln(1+u2)+C\Rightarrow \int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = 2u\arctan \left( u \right) - \ln \left( {1 + {u^2}} \right) + C…(vii)
We have to find the integral in terms of xx. So, replacing uu with xx using (ii).
arctan(x)xdx=2xarctan(x)lnx+1+C\Rightarrow \int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = 2\sqrt x \arctan \left( {\sqrt x } \right) - \ln \left| {x + 1} \right| + C

Hence, arctan(x)xdx=2xarctan(x)lnx+1+C\int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = 2\sqrt x \arctan \left( {\sqrt x } \right) - \ln \left| {x + 1} \right| + C.

Note: We can also solve the given integral by Integration by parts: udv=uvvdu\int {udv} = uv - \int {vdu} .
Use integration by parts with u=arctan(x)u = \arctan \left( {\sqrt x } \right) and dv=1xdxdv = \dfrac{1}{{\sqrt x }}dx
Differentiate uu with respect to xx.
dudx=ddx(arctanx)\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {\arctan \sqrt x } \right)
Now, using the differentiation formula ddx(tan1x)=11+x2\dfrac{d}{{dx}}\left( {{{\tan }^{ - 1}}x} \right) = \dfrac{1}{{1 + {x^2}}} in above differentiation, we get
dudx=11+x×12x\dfrac{{du}}{{dx}} = \dfrac{1}{{1 + x}} \times \dfrac{1}{{2\sqrt x }}
du=12x(x+1)dx\Rightarrow du = \dfrac{1}{{2\sqrt x \left( {x + 1} \right)}}dx
Now, integrate vv with respect to xx.
dv=1xdx\int {dv} = \int {\dfrac{1}{{\sqrt x }}dx}
Now, using the integration formula xndx=xn+1n+1,n1\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}},n \ne - 1 in above integral, we get
v=2xv = 2\sqrt x
The integration by parts formula is:
udv=uvvdu\int {udv} = uv - \int {vdu}
Put the value of u,v,du,dvu,v,du,dv.
arctan(x)xdx=2xarctan(x)2x×12x(x+1)dx\int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = 2\sqrt x \arctan \left( {\sqrt x } \right) - \int {2\sqrt x \times \dfrac{1}{{2\sqrt x \left( {x + 1} \right)}}dx}
arctan(x)xdx=2xarctan(x)1(x+1)dx\Rightarrow \int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = 2\sqrt x \arctan \left( {\sqrt x } \right) - \int {\dfrac{1}{{\left( {x + 1} \right)}}dx}
Now, using the integration formula xndx=xn+1n+1,n1\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}},n \ne - 1 in above integral, we get
arctan(x)xdx=2xarctan(x)lnx+1+C\Rightarrow \int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = 2\sqrt x \arctan \left( {\sqrt x } \right) - \ln \left| {x + 1} \right| + C
Hence, arctan(x)xdx=2xarctan(x)lnx+1+C\int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = 2\sqrt x \arctan \left( {\sqrt x } \right) - \ln \left| {x + 1} \right| + C.