Solveeit Logo

Question

Question: How do you evaluate \(\int{\dfrac{1}{{{x}^{3}}}}dx\) from 3 to \(\infty \) ?...

How do you evaluate 1x3dx\int{\dfrac{1}{{{x}^{3}}}}dx from 3 to \infty ?

Explanation

Solution

In this question, we have to find the value of definite integral. Thus, we will use the integration and the basic mathematical rules to get the solution. First, we will apply the exponent formula 1xn=xn\dfrac{1}{{{x}^{n}}}={{x}^{-n}} in the problem. After that, we will apply the integration formula xndx=xn+1n+1\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1} in the integral. Then, we will again apply the integration formula 1xn=xn\dfrac{1}{{{x}^{n}}}={{x}^{-n}} in the equation. After that, we will again apply the integral formula abf(x)dx=f(b)f(a)\int\limits_{a}^{b}{f(x)dx=f(b)-f(a)} . In the end, we will make the necessary mathematical calculations, to get the required solution for the problem.

Complete step by step solution:
According to the question, we have to find the value of definite integral.
Thus, we will use the integration formula and the basic mathematical rules to get the solution.
The integral to be solved is 1x3dx\int{\dfrac{1}{{{x}^{3}}}}dx for [3,][3,\infty ] -------------- (1)
First, we will apply the exponent formula 1xn=xn\dfrac{1}{{{x}^{n}}}={{x}^{-n}} in equation (1), we get
3x3dx\Rightarrow \int\limits_{3}^{\infty }{{{x}^{-3}}dx}
Now, we will apply the integration formula xndx=xn+1n+1\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1} in the above equation, we get
[x3+13+1]3\Rightarrow \left[ \dfrac{{{x}^{-3+1}}}{-3+1} \right]_{3}^{\infty }
On further simplification, we get
[x22]3\Rightarrow \left[ \dfrac{{{x}^{-2}}}{-2} \right]_{3}^{\infty }
Now, we will again apply the exponent formula 1xn=xn\dfrac{1}{{{x}^{n}}}={{x}^{-n}} in the above equation, we get
[12x2]3\Rightarrow \left[ \dfrac{-1}{2{{x}^{2}}} \right]_{3}^{\infty }
In the last, we will apply the definite integral formula abf(x)dx=f(b)f(a)\int\limits_{a}^{b}{f(x)dx=f(b)-f(a)} in the above equation, we get
(12()2)(12(3)2)\Rightarrow \left( \dfrac{-1}{2{{\left( \infty \right)}^{2}}} \right)-\left( \dfrac{-1}{2{{\left( 3 \right)}^{2}}} \right)
Therefore, we get
(12×)(118)\Rightarrow \left( \dfrac{-1}{2\times \infty } \right)-\left( \dfrac{-1}{18} \right)
Now, we know that 1=0\dfrac{1}{\infty }=0 , thus we get
0+(118)\Rightarrow 0+\left( \dfrac{1}{18} \right)
Thus, we get
118\Rightarrow \dfrac{1}{18}

Therefore, for the definite integral 1x3dx\int{\dfrac{1}{{{x}^{3}}}}dx from 3 to \infty , its value is equal to 118\dfrac{1}{18}

Note: While solving this problem, do the step-by-step calculations properly to avoid the mathematical error. Do mention the formulas you are using to get an accurate answer. Always remember that 10=\dfrac{1}{0}=\infty , therefore 1=0\dfrac{1}{\infty }=0