Solveeit Logo

Question

Question: How do you evaluate \[{{e}^{\dfrac{\pi }{4}i}}-{{e}^{\dfrac{\pi }{3}i}}\] using trigonometric functi...

How do you evaluate eπ4ieπ3i{{e}^{\dfrac{\pi }{4}i}}-{{e}^{\dfrac{\pi }{3}i}} using trigonometric functions??

Explanation

Solution

we know that eθi{{e}^{\theta i}} can be written in trigonometric functions as cos(θ)+isin(θ)\cos \left( \theta \right)+i\sin \left( \theta \right) similarly here we have to change the value of θ\theta to π4\dfrac{\pi }{4} and π3\dfrac{\pi }{3}. To get the values of eπ4i{{e}^{\dfrac{\pi }{4}i}} and eπ3i{{e}^{\dfrac{\pi }{3}i}} to get the values as cos(π4)+isin(π4)\cos \left( \dfrac{\pi }{4} \right)+i\sin \left( \dfrac{\pi }{4} \right) and cos(π3)+isin(π3)\cos \left( \dfrac{\pi }{3} \right)+i\sin \left( \dfrac{\pi }{3} \right) then find the values of trigonometric values of cos(π4)\cos \left( \dfrac{\pi }{4} \right) , sin(π4)\sin \left( \dfrac{\pi }{4} \right),cos(π3)\cos \left( \dfrac{\pi }{3} \right) and sin(π3)\sin \left( \dfrac{\pi }{3} \right). Now substitute the values in the problem to get the simplified form.

Complete step by step solution:
We can write eπ4i{{e}^{\dfrac{\pi }{4}i}} as follows,
eπ4i{{e}^{\dfrac{\pi }{4}i}}
cos(π4)+isin(π4)\Rightarrow \cos \left( \dfrac{\pi }{4} \right)+i\sin \left( \dfrac{\pi }{4} \right)
We know that cos(π4)=12\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}} and sin(π4)=12\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}
12+i12\Rightarrow \dfrac{1}{\sqrt{2}}+i\dfrac{1}{\sqrt{2}}
22+i22\Rightarrow \dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2}
Similarly,
eπ3i{{e}^{\dfrac{\pi }{3}i}}
cos(π3)+isin(π3)\Rightarrow \cos \left( \dfrac{\pi }{3} \right)+i\sin \left( \dfrac{\pi }{3} \right)
We know that cos(π3)=12\cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2} and sin(π3)=32\sin \left( \dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2}
12+i32\Rightarrow \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2}

Hence we can substitute the values that we have obtained from the above calculations to the given question as below,
eπ4ieπ3i{{e}^{\dfrac{\pi }{4}i}}-{{e}^{\dfrac{\pi }{3}i}}
(22+i22)(12+i32)\Rightarrow \left( \dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2} \right)-\left( \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right)
22+i2212i32\Rightarrow \dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2}-\dfrac{1}{2}-i\dfrac{\sqrt{3}}{2}
2212+i(2232)\Rightarrow \dfrac{\sqrt{2}}{2}-\dfrac{1}{2}+i\left( \dfrac{\sqrt{2}}{2}-\dfrac{\sqrt{3}}{2} \right)
212+i(232)\Rightarrow \dfrac{\sqrt{2}-1}{2}+i\left( \dfrac{\sqrt{2}-\sqrt{3}}{2} \right)
From this the problem provided, it is eπ4ieπ3i{{e}^{\dfrac{\pi }{4}i}}-{{e}^{\dfrac{\pi }{3}i}} can be written as 212+i(232)\dfrac{\sqrt{2}-1}{2}+i\left( \dfrac{\sqrt{2}-\sqrt{3}}{2} \right) using the trigonometric functions.

Note: In this type of problems we have to be well known with the conversion of eθi{{e}^{\theta i}} to cos(θ)+isin(θ)\cos \left( \theta \right)+i\sin \left( \theta \right)and the main part in this question is to convert the trigonometric values of basic sine and cosine values. Here in conversion of the form eθi{{e}^{\theta i}} we will be having a real part and an imaginary part. So it is very important to take the real terms together and perform the arithmetic operations and take the imaginary terms together and perform the arithmetic operations on them to get a simplified form of complex number. Here we should always remember to represent the obtained complex number in the standard form of a+iba+ib so that we mention real part and imaginary part separately.